LIU Qingmei, LI Jiacheng, JIANG Wenmin, XIONG Yongqiang. Chromatography-vacuum low temperature method of methane enrichment and isotopic fractionation in gas samples[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 621-629. doi: 10.11781/sysydz202403621
Citation: LIU Qingmei, LI Jiacheng, JIANG Wenmin, XIONG Yongqiang. Chromatography-vacuum low temperature method of methane enrichment and isotopic fractionation in gas samples[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 621-629. doi: 10.11781/sysydz202403621

Chromatography-vacuum low temperature method of methane enrichment and isotopic fractionation in gas samples

doi: 10.11781/sysydz202403621
  • Received Date: 2023-06-05
  • Rev Recd Date: 2024-03-28
  • Publish Date: 2024-05-28
  • Methane (CH4) clumped isotope analysis plays a crucial role in the fields of climate change, energy exploration, and planetary research. The purity of CH4 in samples directly affects the precision and accuracy of high-resolution mass spectrometry in clumped isotope analysis. Addressing the challenge associated with enriching and purifying CH4 components in gas samples, this study optimized conditions such as carrier gas line speed and sample injection volume based on the principles of gas chromatography (GC) component separation, with real-time monitoring of component peak shapes. Additionally, the recovery rate was quantified using an external standard method and purity was verified through GC component analysis to ensure the effectiveness of the purification process. By optimizing the chromatography-vacuum low-temperature enrichment preparation method, the optimal carrier gas line speed for the IBEX system was determined to be 12 mL/min, with a CH4 injection volume less than 12 mL. This facilitated visualization of GC peak shapes, thus ensured that the CH4 peak was essentially separated from the adjacent N2 interference peak, achieving high-purity enrichment of the CH4 single component. When the CH4 content in gas samples was less than 70% and the air content was high, secondary purification was required to improve CH4 purity. The causes of CH4 isotopic fractionation during purification using adsorbents like 5Å molecular sieves were discussed, and extending the CH4 collection time was proposed to eliminate the interference from the 5Å molecular sieve. Currently, this method requires approximately 90 min for a single purification process, with CH4 recovery and purity ranging from 90.1% to 95.7% and 97.3% to 98.9%, respectively. The differences in isotopic composition (δ13CVPDB and δDVSMOW, Δ13CH3D, and Δ12CH2D2) are all less than the analytical error of the mass spectrometer, making them almost negligible.

     

  • All authors disclose no relevant conflict of interests.
    The experiment was designed by LIU Qingmei and JIANG Wenmin. The experimental operation was completed by LIU Qingmei and LI Jiacheng. The manuscript was drafted and revised by LIU Qingmei, JIANG Wenmin and XIONG Yongqiang. All authors have read the last version of the paper and consented to its submission.
  • 致谢: 衷心感谢工程师Simon Davis在IBEX安装、调试阶段提供的帮助!
  • [1]
    DOUGLAS P M J, STOLPER D A, SMITH D A, et al. Diverse origins of arctic and subarctic methane point source emissions identified with multiply-substituted isotopologues[J]. Geochimica et Cosmochimica Acta, 2016, 188: 163-188. doi: 10.1016/j.gca.2016.05.031
    [2]
    BEAUDRY P, STEFÁNSSON A, FIEBIG J, et al. High temperature generation and equilibration of methane in terrestrial geothermal systems: evidence from clumped isotopologues[J]. Geochimica et Cosmochimica Acta, 2021, 309: 209-234. doi: 10.1016/j.gca.2021.06.034
    [3]
    GIUNTA T, YOUNG E D, LABIDI J, et al. Extreme methane clumped isotopologue bio-signatures of aerobic and anaerobic methanotrophy: insights from the Lake Pavin and the Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2022, 338: 34-53. doi: 10.1016/j.gca.2022.09.034
    [4]
    YOUNG E D, KOHL I E, SHERWOOD LOLLAR B, et al. The relative abundances of resolved l2CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases[J]. Geochimica et Cosmochimica Acta, 2017, 203: 235-264. doi: 10.1016/j.gca.2016.12.041
    [5]
    马东民, 王馨, 滕金祥, 等. 镜煤和暗煤与甲烷界面作用实验研究: 以民和盆地低阶煤为例[J]. 油气藏评价与开发, 2022, 12(4): 556-563. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202204002.htm

    MA Dongmin, WANG Xin, TENG Jinxiang, et al. Experimental study on interfacial interaction between methane and vitrinite and durain: a case study of bituminous coal in Minhe Basin[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 556-563. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202204002.htm
    [6]
    杨琴, 黄亮, 周文, 等. 深层页岩伊利石孔隙中甲烷吸附相密度特征[J]. 断块油气田, 2023, 30(5): 799-807. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202305012.htm

    YANG Qin, HUANG Liang, ZHOU Wen, et al. Adsorption phase density characteristics of methane in illite pores of deep shale[J]. Fault-Block Oil and Gas Field, 2023, 30(5): 799-807. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202305012.htm
    [7]
    毛港涛, 李治平, 王凯, 等. 全可视化双反应釜内甲烷水合物生成与分解特征研究[J]. 特种油气藏, 2023, 30(3): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202303009.htm

    Mao Gangtao, Li Zhiping, Wang Kai, et al. Study on the generation and decomposition characteristics of methane hydrate in Fully Visible Dual Reactor[J]. Special Oil & Gas Reservoirs, 2023, 30(3): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202303009.htm
    [8]
    史利燕, 李卫波, 康琴琴, 等. CH4-煤吸附/解吸过程视电阻率变化的实验研究[J]. 油气藏评价与开发, 2022, 12(4): 572-579. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202204004.htm

    SHI Liyan, LI Weibo, KANG Qinqin, et al. Experimental study on variation of apparent resistivity in CH4-coal adsorption/desorption process[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 572-579. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202204004.htm
    [9]
    张添锦, 王延峰, 李军, 等. 注CO2提高页岩吸附甲烷采收率核磁共振实验[J]. 特种油气藏, 2023, 30(5): 113-120. doi: 10.3969/j.issn.1006-6535.2023.05.015

    Zhang Tianjin, Wang Yanfeng, Li Jun, et al. Nuclear magnetic resonance experiment for enhanced recovery af adsorbed methane from shale through carbon dioxide injection[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 113-120. doi: 10.3969/j.issn.1006-6535.2023.05.015
    [10]
    WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/3): 291-314.
    [11]
    EILER J M. A practical guide to clumped isotope geochemistry[J]. Geochimica et Cosmochimica Acta, 2006, 70(S18): A157.
    [12]
    EILER J M. "Clumped-isotope" geochemistry—The study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 309-327.
    [13]
    EILER J M, CLOG M, MAGYAR P, et al. A high-resolution gas-source isotope ratio mass spectrometer[J]. International Journal of Mass Spectrometry, 2013, 335: 45-56. doi: 10.1016/j.ijms.2012.10.014
    [14]
    YOUNG E D, RUMBLE Ⅲ D, FREEDMAN P, et al. A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases[J]. International Journal of Mass Spectrometry, 2016, 401: 1-10. doi: 10.1016/j.ijms.2016.01.006
    [15]
    ONO S, WANG D T, GRUEN D S, et al. Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy[J]. Analytical Chemistry, 2014, 86(13): 6487-6494. doi: 10.1021/ac5010579
    [16]
    GONZALEZ Y, NELSON D D, SHORTER J H, et al. Precise measurements of 12CH2D2 by tunable infrared laser direct absorption spectroscopy[J]. Analytical Chemistry, 2019, 91(23): 14967-14974. doi: 10.1021/acs.analchem.9b03412
    [17]
    GILBERT A, YAMADA K, YOSHIDA N. Exploration of intramolecular 13C isotope distribution in long chain n-alkanes (C11-C31) using isotopic 13C NMR[J]. Organic Geochemistry, 2013, 62: 56-61. doi: 10.1016/j.orggeochem.2013.07.004
    [18]
    MARTIN G J, GUILLOU C, MARTIN M L, et al. Natural factors of isotope fractionation and the characterization of wines[J]. Journal of Agricultural and Food Chemistry, 1988, 36(2): 316-322. doi: 10.1021/jf00080a019
    [19]
    GILBERT A, SILVESTRE V, SEGEBARTH N, et al. The intramolecular 13C-distribution in ethanol reveals the influence of the CO2-fixation pathway and environmental conditions on the site-specific 13C variation in glucose[J]. Plant, Cell & Environment, 2011, 34(7): 1104-1112.
    [20]
    GILBERT A. The organic isotopologue frontier[J]. Annual Review of Earth and Planetary Sciences, 2021, 49(1): 435-464. doi: 10.1146/annurev-earth-071420-053134
    [21]
    STOLPER D A, SESSIONS A L, FERREIRA A A, et al. Combined 13C-D and D-D clumping in methane: methods and preliminary results[J]. Geochimica et Cosmochimica Acta, 2014, 126: 169-191. doi: 10.1016/j.gca.2013.10.045
    [22]
    STOLPER D A, LAWSON M, DAVIS C L, et al. Formation temperatures of thermogenic and biogenic methane[J]. Science, 2014, 344(6191): 1500-1503. doi: 10.1126/science.1254509
    [23]
    WANG D T, GRUEN D S, LOLLAR B S, et al. Nonequilibrium clumped isotope signals in microbial methane[J]. Science, 2015, 348(6233): 428-431. doi: 10.1126/science.aaa4326
    [24]
    WANG D T, WELANDER P V, ONO S. Fractionation of the methane isotopologues 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus capsulatus (Bath)[J]. Geochimica et Cosmochimica Acta, 2016, 192: 186-202. doi: 10.1016/j.gca.2016.07.031
    [25]
    JENNINGS W. Analytical gas chromatography[M]. Orlando: Academic Press Inc., 1987.
    [26]
    CHEN Zhigang, YIN Xijie, ZHOU Youping. Effects of GC temperature and carrier gas flow rate on on-line oxygen isotope measurement as studied by on-column CO injection[J]. Journal of Mass Spectrometry, 2015, 50(8): 1023-1030. doi: 10.1002/jms.3617
    [27]
    WERRES T, SCHMIDT T C, TEUTENBERG T. The influence of injection volume on efficiency of microbore liquid chromatography columns for gradient and isocratic elution[J]. Journal of Chromatography A, 2021, 1641: 461965. doi: 10.1016/j.chroma.2021.461965
    [28]
    STRАPOĆD, SCHIMMELMANN A, MASTALERZ M. Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal[J]. Organic Geochemistry, 2006, 37(2): 152-164. doi: 10.1016/j.orggeochem.2005.10.002
    [29]
    XIA Xinyu, TANG Yongchun. Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption[J]. Geochimica et Cosmochimica Acta, 2012, 77: 489-503. doi: 10.1016/j.gca.2011.10.014
    [30]
    苏现波, 陈润, 林晓英, 等. 煤吸附13CH412CH4的特性曲线及其应用[J]. 煤炭学报, 2007, 32(5): 539-543. doi: 10.3321/j.issn:0253-9993.2007.05.021

    SU Xianbo, CHEN Run, LIN Xiaoying, et al. The adsorption characteristic curves of 13CH4 and 12CH4 on coal and its application[J]. Journal of China Coal Society, 2007, 32(5): 539-543. doi: 10.3321/j.issn:0253-9993.2007.05.021
    [31]
    WANG Xiaofeng, LI Xiaofu, WANG Xiangzeng, et al. Carbon isotopic fractionation by desorption of shale gases[J]. Marine and Petroleum Geology, 2015, 60: 79-86. doi: 10.1016/j.marpetgeo.2014.11.003
    [32]
    MASON E A, KRONSTADT B. Graham's laws of diffusion and effusion[J]. Journal of Chemical Education, 1967, 44(12): 740. doi: 10.1021/ed044p740
    [33]
    GUNTER B D, GLEASON J D. Isotope fractionation during gas chromatographic separations[J]. Journal of Chromatographic Science, 1971, 9(3): 191-192. doi: 10.1093/chromsci/9.3.191
    [34]
    CUI Xiaojun, MARC BUSTIN R, DIPPLE G. Selective transport of CO2, CH4, and N2 in coals: insights from modeling of experimental gas adsorption data[J]. Fuel, 2004, 83(3): 293-303. doi: 10.1016/j.fuel.2003.09.001
    [35]
    WANG Xiaofeng, LIU Peng, MENG Qiang, et al. Physical selectivity on isotopologues of gaseous alkanes by shale pore network: evidence from dynamic adsorption process of natural gas[J]. Journal of Natural Gas Science and Engineering, 2022, 97: 104252. doi: 10.1016/j.jngse.2021.104252
    [36]
    CRANK J. The mathematics of diffusion[M]. 2nd ed. Oxford: Clarendon Press, 1975.
    [37]
    程付启, 金强. 成藏后天然气组分与同位素的分馏效应研究[J]. 天然气地球科学, 2005, 16(4): 522-525. doi: 10.3969/j.issn.1672-1926.2005.04.022

    CHENG Fuqi, JIN Qiang. Composition and isotope fractionations of accumulated natural gas and their significance[J]. Natural Gas Geoscience, 2005, 16(4): 522-525. doi: 10.3969/j.issn.1672-1926.2005.04.022
  • Relative Articles

    [1]MA Yuanyuan, TAO Cheng, BA Liqiang, WANG Jie, LI Jipeng, LI Luyun, SUN Yongge. Measurements of position-specific carbon isotopic compositions in propane by on-line Gas Chromatography-Pyrolysis-Gas Chromatography-Isotope Ratio Mass Spectrometer (GC-Py-GC-IRMS) and its preliminary application[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(2): 350-356. doi: 10.11781/sysydz202202350
    [2]ZOU Yu, WANG Guojian, LU Li, ZHU Huaiping, LIU Guangxiang, YUAN Yusong, YANG Haiyuan, JIN Zhijun. Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 844-854. doi: 10.11781/sysydz202105844
    [3]TAO Cheng, ZHAI Changbo, YU Linjie, SHEN Baojian, WANG Jie, YANG Huamin. Carbon isotope fractionation characteristics during shale gas release[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(1): 113-116. doi: 10.11781/sysydz202001113
    [4]GAO Yuqiao, GAO Hequn, HE Xipeng, DING Anxu, ZHANG Peixian, HE Guisong. Methane isotope fractionation characteristics of shale gas and its significance as a productivity indicator[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(6): 865-870. doi: 10.11781/sysydz201906865
    [5]FANG Fan, SUN Chong, SHU Xiangwei, ZHU Zhongyun, FANG Zihe. Problems of methane isothermal adsorption calculation in shale and method improvement[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2018, 40(1): 71-77. doi: 10.11781/sysydz201801071
    [6]Guo Shaobin, Zhai Gangyi, Bao Shujing, Shi Dishi, Hu Jilin. Difference of methane adsorption capacity of kerogen and clay minerals[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2017, 39(5): 682-685. doi: 10.11781/sysydz201705682
    [7]Zhang Zhenbing, Qiu Xiaolong, Yuan Yueqin, Li Xiangfeng, Hao Qi, Wang Jun. Experimental study on methane adsorption of coal bed from Sihe Mine in Qinshui Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2014, 36(5): 656-658. doi: 10.11781/sysydz201405656
    [8]Xue Luo, Xu Sihuang, Yuan Caiping, Liu Xiaoxia, Li Songfeng. Evolution characteristics of methane stable carbon isotope in thermal simulation experiment:Discussion of δ13C1-Ro relationship under experimental and natural conditions[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2012, 34(6): 617-622. doi: 10.11781/sysydz201206617
    [9]Wang Shuangqing, Qin Jing, Sun Weilin, Shen Bin, Yang Jiajia, Yan Kaifeng. Determination of benzene series in soil and sediment with combined thermal desorption gas chromatography[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2012, 34(1): 94-98. doi: 10.11781/sysydz201201094
    [10]Cheng Qiuquan, Fan Ming, Huang Jiwen, Chen Zhengfu. THE TWO-STAGE FRACTIONATION MODEL OF METHANE CARBON ISOTOPE FROM THE THERMAL SIMULATION EXPERIMENTS OF SOURCE ROCKS IN THE KUQA DEPRESSION OF THE TARIM BASIN[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2009, 31(1): 101-104. doi: 10.11781/sysydz200901101
    [11]Tao Cheng, Ba Liqiang, Wang Jie, Zhou Yu. ANALYSIS AND APPLICATION OF HYDROGEN ISOTOPIC COMPOSITION OF THE NATURAL GAS[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2008, 30(1): 94-97. doi: 10.11781/sysydz200801094
    [12]Lei Tianzhu, Zhang Gengxin, Qiu Junli, Xia Yanqing, Nan Qingyun. EFFECTS OF ELEMENT SULFUR ON CARBON ISOTOPIC FRACTIONATION OF METHANE[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2006, 28(2): 173-176. doi: 10.11781/sysydz200602173
    [13]JIN Xiao-hui, ZHU Dan, LIN Ren-zi, SHI Quan. PARTITION EXPERIMENT OF GC FINGERPRINT OF CRUDE OIL[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2003, 25(1): 53-57. doi: 10.11781/sysydz200301053
    [14]LIU Jin-zhong, XIANG Tong-shou. COLLECTION, QUANTITATIVE ANALYSIS AND CARBON ISOTOPIC ANALYSIS METHODS OF MINOR/TRACE HYDROCARBON GASES[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2003, 25(5): 492-497. doi: 10.11781/sysydz200305492
    [15]TANG Shu-heng, YANG Qi, TANG Da-zhen, SHAO Xian-jie, WANG Jiang. STUDY ON THE EXPERIMENT AND MECHANISM OF RAISING THE RECOVERY RATIO OF COALBED METHANE BY GAS INJECTION[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2002, 24(6): 545-549. doi: 10.11781/sysydz200206545
    [16]Zhang Dajiang, Li Jinchao, Huang Xiaoming, Zhou Zhuhong. SIMPLIFICATION OF PYROLYSIS—GAS CHROMATOGRAPHY PARAMETERS FOR KEROGENS AND ITS SIGNIFICANCE[J]. PETROLEUM GEOLOGY & EXPERIMENT, 1990, 12(1): 49-55. doi: 10.11781/sysydz199001049
    [17]Zhang Wenzheng. FRACTIONATION OF CARBON ISOTOPES OF ORGANIC MATTER AND ITS GEOLOGICAL SIGNIFICENCE[J]. PETROLEUM GEOLOGY & EXPERIMENT, 1989, 11(2): 177-184. doi: 10.11781/sysydz198902177
    [18]Yang Chuanzhong. PROGRAMMED COMPUTATION OF GC DATA[J]. PETROLEUM GEOLOGY & EXPERIMENT, 1987, 9(4): 385-386. doi: 10.11781/sysydz198704385
    [19]Qi Houfa. PRELIMINARY COMMENT ON THE VARIATION OF CARBON ISOTOPIC COMPOSITION OF METHANE IN COAL MEASURE GAS AND SEAM GAS, AND ITS CONTROLLING FACTOR[J]. PETROLEUM GEOLOGY & EXPERIMENT, 1985, 7(2): 81-86. doi: 10.11781/sysydz198502081
  • Cited by

    Periodical cited type(1)

    1. 刘庆丽. 油田轻烃分馏产品精制及油田轻烃深加工技术研究. 山东化工. 2024(23): 192-194 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.9 %FULLTEXT: 25.9 %META: 67.2 %META: 67.2 %PDF: 6.9 %PDF: 6.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.0 %其他: 16.0 %其他: 1.1 %其他: 1.1 %Tulsa: 0.9 %Tulsa: 0.9 %三亚: 0.2 %三亚: 0.2 %上海: 0.4 %上海: 0.4 %东营: 0.2 %东营: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %兰州: 0.6 %兰州: 0.6 %北京: 1.9 %北京: 1.9 %南京: 0.6 %南京: 0.6 %南通: 0.4 %南通: 0.4 %合肥: 1.3 %合肥: 1.3 %哥伦布: 0.2 %哥伦布: 0.2 %夏延: 0.4 %夏延: 0.4 %大连: 0.4 %大连: 0.4 %天津: 1.1 %天津: 1.1 %布雷斯特: 0.6 %布雷斯特: 0.6 %广州: 1.1 %广州: 1.1 %弗吉尼亚州: 0.2 %弗吉尼亚州: 0.2 %张家口: 4.8 %张家口: 4.8 %得梅因: 1.1 %得梅因: 1.1 %成都: 0.6 %成都: 0.6 %扬州: 0.4 %扬州: 0.4 %拉瓦勒: 0.6 %拉瓦勒: 0.6 %无锡: 1.9 %无锡: 1.9 %朝阳: 0.6 %朝阳: 0.6 %杭州: 0.6 %杭州: 0.6 %格兰特县: 0.6 %格兰特县: 0.6 %榆林: 0.2 %榆林: 0.2 %武汉: 1.1 %武汉: 1.1 %沧州: 0.2 %沧州: 0.2 %洛杉矶: 0.9 %洛杉矶: 0.9 %海得拉巴: 1.3 %海得拉巴: 1.3 %淄博: 0.2 %淄博: 0.2 %温州: 0.9 %温州: 0.9 %湘潭: 0.2 %湘潭: 0.2 %漯河: 2.6 %漯河: 2.6 %烟台: 0.4 %烟台: 0.4 %盘锦: 0.4 %盘锦: 0.4 %芒廷维尤: 38.2 %芒廷维尤: 38.2 %芝加哥: 1.1 %芝加哥: 1.1 %莫斯科: 1.3 %莫斯科: 1.3 %西宁: 3.5 %西宁: 3.5 %诺沃克: 0.9 %诺沃克: 0.9 %贵阳: 0.4 %贵阳: 0.4 %达州: 0.2 %达州: 0.2 %运城: 1.7 %运城: 1.7 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.4 %郑州: 0.4 %都柏林: 0.6 %都柏林: 0.6 %重庆: 0.6 %重庆: 0.6 %长沙: 1.1 %长沙: 1.1 %阿姆斯特丹: 0.6 %阿姆斯特丹: 0.6 %青岛: 0.2 %青岛: 0.2 %龙岩: 0.4 %龙岩: 0.4 %其他其他Tulsa三亚上海东营乌鲁木齐兰州北京南京南通合肥哥伦布夏延大连天津布雷斯特广州弗吉尼亚州张家口得梅因成都扬州拉瓦勒无锡朝阳杭州格兰特县榆林武汉沧州洛杉矶海得拉巴淄博温州湘潭漯河烟台盘锦芒廷维尤芝加哥莫斯科西宁诺沃克贵阳达州运城邯郸郑州都柏林重庆长沙阿姆斯特丹青岛龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (309) PDF downloads(32) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return