Volume 46 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
LU Hao, ZHANG Jiaosheng, LI Chao, ZENG Lianbo, LIU Yanxiang, LÜ Wenya, LI Ruiqi. Development characteristics and main controlling factors of bedding-parallel lamellated fractures in shale in 7th member of Triassic Yanchang Formation, southwestern Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 698-709. doi: 10.11781/sysydz202404698
Citation: LU Hao, ZHANG Jiaosheng, LI Chao, ZENG Lianbo, LIU Yanxiang, LÜ Wenya, LI Ruiqi. Development characteristics and main controlling factors of bedding-parallel lamellated fractures in shale in 7th member of Triassic Yanchang Formation, southwestern Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 698-709. doi: 10.11781/sysydz202404698

Development characteristics and main controlling factors of bedding-parallel lamellated fractures in shale in 7th member of Triassic Yanchang Formation, southwestern Ordos Basin

doi: 10.11781/sysydz202404698
  • Received Date: 2024-03-06
  • Rev Recd Date: 2024-06-03
  • Publish Date: 2024-07-28
  • Bedding-parallel lamellated fractures are widely developed in shale in the 7th member of Triassic Yanchang Formation (hereinafter referred to as Chang 7) in the southwestern Ordos Basin, which holds significant importance for sweet spot selection, fracturing operations, and development planning. In this paper, based on the surface outcrop and core observations in the Qingcheng to Huachi region of the southwestern basin, combined with analysis and testing of organic matter content, mineral composition and fabric characteristics, the developmental characteristics of bedding-parallel lamellated fractures in different lithologies in the Chang 7 shale were identified, and the main controlling factors of fracture development were analyzed. Results show that the morphology and distribution of the bedding-parallel lamellated fractures are mainly controlled by the laminates, exhibiting characteristics such as continuous flatness, wavy bending and branching due to the different characteristics of the laminae. Sandstone bedding-parallel lamellated fractures are mostly distributed along the biotite laminae, with good continuity and large aperture, and are generally unfilled. Shale bedding-parallel lamellated fractures are most developed in black shale, mostly distributed along the bedding laminates composed of organic matter layers, with a few partially or completely filled by calcite and organic matter. The aperture is smaller than that of sandstone, but the density is higher. Bedding-parallel lamellated fractures are also controlled by organic matter content, lithology, mineral composition, and laminate structure. The sandstone bedding-parallel lamellated fractures are mainly controlled by the content of biotite and the laminates formed by it. When sandstone sorting is good and biotite content is high with a layered distribution, the degree of fracture development is high. As the density of the laminates increases, the degree of development of bedding-parallel lamellated fractures also increases. Shale bedding-parallel lamellated fractures mainly develop in organic matter laminates and tuffaceous laminates, and are controlled by organic matter content and mineral components. Fracture density increases first and then decreases with the density of the layers. Fracture density in thin laminates is higher than that in thick laminates.

     

  • All authors disclose no relevant conflict of interests.
    LU Hao completed the experimental operation and the writing and revision of the paper. ZHANG Jiaosheng and LI Chao provided the experimental materials and participated in the experimental design. ZENG Lianbo and LÜ Wenya guided the experiment operation, paper design and revision. LIU Yanxiang participated in the paper revision. LI Ruiqi participated in the data collation and mapping. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    胡素云, 赵文智, 侯连华, 等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发, 2020, 47(4): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004021.htm

    HU Suyun, ZHAO Wenzhi, HOU Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004021.htm
    [2]
    金之钧, 王冠平, 刘光祥, 等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 2021, 42(7): 821-835. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm

    JIN Zhijun, WANG Guanping, LIU Guangxiang, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7): 821-835. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm
    [3]
    国家市场监督管理总局, 国家标准化管理委员会. 页岩油地质评价方法: GB/T 38718-2020[S]. 北京: 中国标准出版社, 2020.

    State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China. Geological evaluating methods for shale oil: GB/T 38718-2020[S]. Beijing: Standards Press of China, 2020.
    [4]
    LYU Wenya, ZENG Lianbo, ZHANG Benjiang, et al. Influence of natural fractures on gas accumulation in the Upper Triassic tight gas sandstones in the northwestern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2017, 83: 60-72. doi: 10.1016/j.marpetgeo.2017.03.004
    [5]
    JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068
    [6]
    田鹤, 曾联波, 徐翔, 等. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响[J]. 石油与天然气地质, 2020, 41(3): 474-483. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003005.htm

    TIAN He, ZENG Lianbo, XU Xiang, et al. Characteristics of natural fractures in marine shale in Fuling area, Sichuan Basin, and their influence on shale gas[J]. Oil & Gas Geology, 2020, 41(3): 474-483. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003005.htm
    [7]
    ZHANG Zilin, ZHONG Anhai, YANG Feng, et al. Experimental study on the hydraulic fracture propagation of laminar argillaceous limestone continental shale[J]. Frontiers in Earth Science, 2023, 11: 1193205. doi: 10.3389/feart.2023.1193205
    [8]
    徐翔. 四川盆地东南部海相页岩多尺度裂缝及对含气性影响研究[D]. 北京: 中国石油大学(北京), 2021.

    XU Xiang. Research on multi-scale fractures and their influences on gas-bearing properties in marine shales in the southeastern Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2021.
    [9]
    曾联波, 吕文雅, 徐翔, 等. 典型致密砂岩与页岩层理缝的发育特征、形成机理及油气意义[J]. 石油学报, 2022, 43(2): 180-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202202002.htm

    ZENG Lianbo, LÜ Wenya, XU Xiang, et al. Development characteristics, formation mechanism and hydrocarbon significance of bedding fractures in typical tight sandstone and shale[J]. Acta Petrolei Sinica, 2022, 43(2): 180-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202202002.htm
    [10]
    蒲秀刚, 金凤鸣, 韩文中, 等. 陆相页岩油甜点地质特征与勘探关键技术: 以沧东凹陷孔店组二段为例[J]. 石油学报, 2019, 40(8): 997-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909001.htm

    PU Xiugang, JIN Fengming, HAN Wenzhong, et al. Sweet spots geological characteristics and key exploration technologies of continental shale oil: a case study of member 2 of Kongdian Formation in Cangdong Sag[J]. Acta Petrolei Sinica, 2019, 40(8): 997-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909001.htm
    [11]
    鞠玮, 尤源, 冯胜斌, 等. 鄂尔多斯盆地延长组长7油层组致密砂岩储层层理缝特征及成因[J]. 石油与天然气地质, 2020, 41(3): 596-605. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003016.htm

    JU Wei, YOU Yuan, FENG Shengbin, et al. Characteristics and genesis of bedding-parallel fractures in tight sandstone reservoirs of Chang 7 oil layer, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(3): 596-605. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003016.htm
    [12]
    吴建发, 赵圣贤, 范存辉, 等. 川南长宁地区龙马溪组富有机质页岩裂缝发育特征及其与含气性的关系[J]. 石油学报, 2021, 42(4): 428-446. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202104002.htm

    WU Jianfa, ZHAO Shengxian, FAN Cunhui, et al. Fracture characteristics of the Longmaxi Formation shale and its relationship with gas-bearing properties in Changning area, southern Sichuan[J]. Acta Petrolei Sinica, 2021, 42(4): 428-446. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202104002.htm
    [13]
    RAVIER E, MARTINEZ M, PELLENARD P, et al. The Milankovitch fingerprint on the distribution and thickness of bedding-parallel veins (beef) in source rocks[J]. Marine and Petroleum Geology, 2020, 122: 104643. doi: 10.1016/j.marpetgeo.2020.104643
    [14]
    ZENG Lianbo, LYU Wenya, LI Jian, et al. Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 30: 1-9. doi: 10.1016/j.jngse.2015.11.048
    [15]
    张云钊, 曾联波, 罗群, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝特征和成因机制[J]. 天然气地球科学, 2018, 29(2): 211-225. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201802007.htm

    ZHANG Yunzhao, ZENG Lianbo, LUO Qun, et al. Research on the types and genetic mechanisms of tight reservoir in the Lucaogou Formation in Jimusar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2018, 29(2): 211-225. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201802007.htm
    [16]
    陈迎宾, 郑冰, 袁东山, 等. 大邑构造须家河组气藏裂缝发育特征及主控因素[J]. 石油实验地质, 2013, 35(1): 29-35. doi: 10.11781/sysydz201301029

    CHEN Yingbin, ZHENG Bing, YUAN Dongshan, et al. Characteristics and main controlling factors of fractures in gas reservoir of Xujiahe Formation, Dayi Structure[J]. Petroleum Geology & Experiment, 2013, 35(1): 29-35. doi: 10.11781/sysydz201301029
    [17]
    吕文雅, 曾联波, 周思宾, 等. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素: 以红河油田长8储层为例[J]. 天然气地球科学, 2020, 31(1): 37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001004.htm

    LÜ Wenya, ZENG Lianbo, ZHOU Sibin, et al. Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin: case study of the eighth member of the Yanchang Formation in Honghe Oilfield[J]. Natural Gas Geoscience, 2020, 31(1): 37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001004.htm
    [18]
    GONG Lei, WANG Jie, GAO Shuai, et al. Characterization, controlling factors and evolution of fracture effectiveness in shale oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108655. doi: 10.1016/j.petrol.2021.108655
    [19]
    罗群, 魏浩元, 刘冬冬, 等. 层理缝在致密油成藏富集中的意义、研究进展及其趋势[J]. 石油实验地质, 2017, 39(1): 1-7. doi: 10.11781/sysydz201701001

    LUO Qun, WEI Haoyuan, LIU Dongdong, et al. Research significance, advances and trends on the role of bedding fracture in tight oil accumulation[J]. Petroleum Geology & Experiment, 2017, 39(1): 1-7. doi: 10.11781/sysydz201701001
    [20]
    李鑫海, 崔耀科, 穆睿, 等. 致密砂岩中层理缝的赋存特征及其与油气分布的关系[J]. 地球科学前沿, 2021, 11(3): 384-393.

    LI Xinhai, CUI Yaoke, MU Rui, et al. Occurrence characteristics and relation on oil and gas distribution of bedding fractures in tight gas sand[J]. Advances in Geosciences, 2021, 11(3): 384-393.
    [21]
    GRATIER J P, FRERY E, DESCHAMPS P, et al. How travertine veins grow from top to bottom and lift the rocks above them: the effect of crystallization force[J]. Geology, 2012, 40(11): 1015-1018. doi: 10.1130/G33286.1
    [22]
    COBBOLD P R, ZANELLA A, RODRIGUES N, et al. Bedding-parallel fibrous veins (beef and cone-in-cone): worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization[J]. Marine and Petroleum Geology, 2013, 43: 1-20. doi: 10.1016/j.marpetgeo.2013.01.010
    [23]
    LIU Huimin, ZHANG Shun, SONG Guoqi, et al. A discussion on the origin of shale reservoir inter-laminar fractures in the Shahejie Formation of Paleogene, Dongying Depression[J]. Journal of Earth Science, 2017, 28(6): 1064-1077. doi: 10.1007/s12583-016-0946-3
    [24]
    SÉJOURNÉ S, MALO M, SAVARD M M, et al. Multiple origin and regional significance of bedding parallel veins in a fold and thrust belt: the example of a carbonate slice along the Appalachian structural front[J]. Tectonophysics, 2005, 407(3/4): 189-209.
    [25]
    SWANSON S K. Lithostratigraphic controls on bedding-plane fractures and the potential for discrete groundwater flow through a siliciclastic sandstone aquifer, southern Wisconsin[J]. Sedimentary Geology, 2007, 197(1/2): 65-78.
    [26]
    ZANELLA A, COBBOLD P R, ROJAS L. Beef veins and thrust detachments in Early Cretaceous source rocks, foothills of Magallanes- Austral Basin, southern Chile and Argentina: structural evidence for fluid overpressure during hydrocarbon maturation[J]. Marine and Petroleum Geology, 2014, 55: 250-261. doi: 10.1016/j.marpetgeo.2013.10.006
    [27]
    ZHANG Jianguo, JIANG Zaixing, WANG Siqi, et al. Bedding-parallel calcite veins as a proxy for shale reservoir quality[J]. Marine and Petroleum Geology, 2021, 127: 104975. doi: 10.1016/j.marpetgeo.2021.104975
    [28]
    贺振建, 刘宝军, 王朴. 准噶尔盆地永进地区侏罗系层理缝成因及其对储层的影响[J]. 油气地质与采收率, 2011, 18(1): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201101004.htm

    HE Zhenjian, LIU Baojun, WANG Pu. Genesis of bedding fractures and its influences on reservoirs in Jurassic, Yongjin area, Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(1): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201101004.htm
    [29]
    刘冬冬, 张晨, 罗群, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝发育特征及控制因素[J]. 中国石油勘探, 2017, 22(4): 36-47. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201704004.htm

    LIU Dongdong, ZHANG Chen, LUO Qun, et al. Development characteristics and controlling factors of natural fractures in Permian Lucaogou Formation tight reservoir in Jimsar Sag, Junggar Basin[J]. China Petroleum Exploration, 2017, 22(4): 36-47. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201704004.htm
    [30]
    吴志均, 唐红君, 安凤山. 川西新场致密砂岩气藏层理缝成因探讨[J]. 石油勘探与开发, 2003, 30(2): 109-111. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200302037.htm

    WU Zhijun, TANG Hongjun, AN Fengshan. Causese of bedding fractures of tight sand gas-reservoir in Xinchang, west Sichuan region[J]. Petroleum Exploration and Development, 2003, 30(2): 109-111. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200302037.htm
    [31]
    NOLLET S, URAI J L, BONS P D, et al. Numerical simulations of polycrystal growth in veins[J]. Journal of Structural Geology, 2005, 27(2): 217-230. doi: 10.1016/j.jsg.2004.10.003
    [32]
    XU Xiang, ZENG Lianbo, TIAN He, et al. Controlling factors of lamellation fractures in marine shales: a case study of the Fuling area in eastern Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109091. doi: 10.1016/j.petrol.2021.109091
    [33]
    ZENG Lianbo, SHU Zhiguo, LYU Wenya, et al. Lamellation fractures in the Paleogene continental shale oil reservoirs in the Qianjiang Depression, Jianghan Basin, China[J]. Geofluids, 2021, 2021: 6653299.
    [34]
    曾联波, 马诗杰, 田鹤, 等. 富有机质页岩天然裂缝研究进展[J]. 地球科学, 2023, 48(7): 2427-2442. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307001.htm

    ZENG Lianbo, MA Shijie, TIAN He, et al. Research progress of natural fractures in organic rich shale[J]. Earth Science, 2023, 48(7): 2427-2442. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307001.htm
    [35]
    LI Changhai, ZHAO Lun, LIU Bo, et al. Origin, distribution and implications on production of bedding-parallel fractures: a case study from the Carboniferous KT-Ⅰ Formation in the NT oilfield, Precaspian Basin, Kazakhstan[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107655. doi: 10.1016/j.petrol.2020.107655
    [36]
    ZENG Lianbo, LI Xiangyang. Fractures in sandstone reservoirs with ultra-low permeability: a case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China[J]. AAPG Bulletin, 2009, 93(4): 461-477. doi: 10.1306/09240808047
    [37]
    李士祥, 郭芪恒, 潘松圻, 等. 烃类源内微运移对页理型页岩油差异富集的影响: 以鄂尔多斯盆地三叠系延长组长73亚段为例[J]. 中国石油勘探, 2023, 28(4): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202304005.htm

    LI Shixiang, GUO Qiheng, PAN Songqi, et al. Influence of intrasource micro-migration of hydrocarbons on the differential enrichment of laminated type shale oil: a case study of the third sub-member of the seventh member of the Triassic Yanchang Formation in Ordos Basin[J]. China Petroleum Exploration, 2023, 28(4): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202304005.htm
    [38]
    付金华, 王龙, 陈修, 等. 鄂尔多斯盆地长7页岩油勘探开发新进展及前景展望[J]. 中国石油勘探, 2023, 28(5): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202305001.htm

    FU Jinhua, WANG Long, CHEN Xiu, et al. Progress and prospects of shale oil exploration and development in the seventh member of Yanchang Formation in Ordos Basin[J]. China Petroleum Exploration, 2023, 28(5): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202305001.htm
    [39]
    李子龙, 范昌育, 惠潇, 等. 非常规沉积储层层理缝研究进展及趋势[J/OL]. 沉积学报, 1-20[2024-06-06]. https://doi.org/10.14027/j.issn.1000-0550.2022.124.

    LI Zilong, FAN Changyu, HUI Xiao, et al. Research progress and trend of bedding-parallel fractures in unconventional sedimentary reservoirs[J/OL]. Acta Sedimentologica Sinica, 1-20[2024-06- 06]. https://doi.org/10.14027/j.issn.1000-0550.2022.124.
    [40]
    杜晓宇, 金之钧, 曾联波, 等. 鄂尔多斯盆地陇东地区长7页岩油储层天然裂缝发育特征与控制因素[J]. 地球科学, 2023, 48(7): 2589-2600. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307011.htm

    DU Xiaoyu, JIN Zhijun, ZENG Lianbo, et al. Development characteristics and controlling factors of natural fractures in Chang 7 shale oil reservoir, Longdong area, Ordos Basin[J]. Earth Science, 2023, 48(7): 2589-2600. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307011.htm
    [41]
    陈安清, 陈洪德, 侯明才, 等. 鄂尔多斯盆地中—晚三叠世事件沉积对印支运动Ⅰ幕的指示[J]. 地质学报, 2011, 85(10): 1681-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201110012.htm

    CHEN Anqing, CHEN Hongde, HOU Mingcai, et al. The Middle-Late Triassic event sediments in Ordos Basin: indicators for episode Ⅰ of the Indosinian Movement[J]. Acta Geologica Sinica, 2011, 85(10): 1681-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201110012.htm
    [42]
    邓秀芹, 蔺昉晓, 刘显阳, 等. 鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的探讨[J]. 古地理学报, 2008, 10(2): 159-166. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200802007.htm

    DENG Xiuqin, LIN Fangxiao, LIU Xianyang, et al. Discussion on relationship between sedimentary evolution of the Triassic Yanchang Formation and the Early Indosinian Movement in Ordos Basin[J]. Journal of Palaeogeography, 2008, 10(2): 159-166. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200802007.htm
    [43]
    王峰, 田景春, 范立勇, 等. 鄂尔多斯盆地三叠系延长组沉积充填演化及其对印支构造运动的响应[J]. 天然气地球科学, 2010, 21(6): 882-889. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201006003.htm

    WANG Feng, TIAN Jingchun, FAN Liyong, et al. Evolution of sedimentary fillings in Triassic Yanchang Formation and its response to Indosinian Movement in Ordos Basin[J]. Natural Gas Geoscience, 2010, 21(6): 882-889. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201006003.htm
    [44]
    WANG Feng, CHEN Rong, YU Wei, et al. Characteristics of lacustrine deepwater fine-grained lithofacies and source-reservoir combination of tight oil in the Triassic Chang 7 member in Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108429. doi: 10.1016/j.petrol.2021.108429
    [45]
    杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm

    YANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm
    [46]
    李智勇, 徐云泽, 邓静, 等. 陆相湖泊深水砂质碎屑流与浊流的微观沉积特征及区分方法: 以鄂尔多斯盆地延长组长7段为例[J]. 石油实验地质, 2021, 43(3): 415-423. doi: 10.11781/sysydz202103415

    LI Zhiyong, XU Yunze, DENG Jing, et al. Microscale sedimentary characteristics and distinguishing methods for deep-water sandy debris flow and turbidity flow in continental lakes: a case study of seventh member of Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2021, 43(3): 415-423. doi: 10.11781/sysydz202103415
    [47]
    邱欣卫, 刘池洋, 李元昊, 等. 鄂尔多斯盆地延长组凝灰岩夹层展布特征及其地质意义[J]. 沉积学报, 2009, 27(6): 1138-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906017.htm

    QIU Xinwei, LIU Chiyang, LI Yuanhao, et al. Distribution characteristics and geological significances of tuff interlayers in Yanchang Formation of Ordos Basin[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1138-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906017.htm
    [48]
    ER Chuang, LI Yangyang, ZHAO Jingzhou, et al. Characteristics of lacustrine organic-rich shale: a case study of the Chang 7 member, Triassic Yanchang Formation, Ordos Basin, China[J]. Journal of Natural Gas Geoscience, 2016, 1(2): 173-185. doi: 10.1016/j.jnggs.2016.04.001
    [49]
    李庆, 卢浩, 吴胜和, 等. 鄂尔多斯盆地南部三叠系长73亚段凝灰岩沉积成因及储层特征[J]. 石油与天然气地质, 2022, 43(5): 1141-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205011.htm

    LI Qing, LU Hao, WU Shenghe, et al. Sedimentary origins and reservoir characteristics of the Triassic Chang 73 tuffs in the southern Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1141-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205011.htm
    [50]
    SUN Ningliang, CHEN Tianyu, ZHONG Jianhua, et al. Petrographic and geochemical characteristics of deep-lacustrine organic-rich mudstone and shale of the Upper Triassic Chang 7 member in the southern Ordos Basin, northern China: implications for shale oil exploration[J]. Journal of Asian Earth Sciences, 2022, 227: 105118. doi: 10.1016/j.jseaes.2022.105118
    [51]
    付金华, 郭雯, 李士祥, 等. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力[J]. 天然气地球科学, 2021, 32(12): 1749-1761. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202112001.htm

    FU Jinhua, GUO Wen, LI Shixiang, et al. Characteristics and exploration potential of multi-type shale oil in the 7th member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1749-1761. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202112001.htm
    [52]
    刘显阳, 李士祥, 周新平, 等. 鄂尔多斯盆地石油勘探新领域、新类型及资源潜力[J]. 石油学报, 2023, 44(12): 2070-2090. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202312005.htm

    LIU Xianyang, LI Shixiang, ZHOU Xinping, et al. New fields, new types and resource potentials of petroleum exploration in Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(12): 2070-2090. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202312005.htm
    [53]
    徐明慧, 王峰, 田景春, 等. 湖相富有机质泥页岩岩相划分及沉积环境: 以鄂尔多斯盆地长73亚段为例[J/OL]. 沉积学报, 1-24[2024-06-06]. https://doi.org/10.14027/j.issn.1000-0550.2023.076.

    XU Minghui, WANG Feng, TIAN Jingchun, et al. Classification of lacustrine organic-rich mud shale petrography and the depositional environment: an example from the Chang 73 sub-member in the Ordos Basin[J/OL]. Acta Sedimentologica Sinica, 1-24[2024-06-06]. https://doi.org/10.14027/j.issn.1000-0550.2023.076.
    [54]
    赵家锐, 祝海华, 冯小哲, 等. 鄂尔多斯盆地长7段云母特征及其对储层的影响[J]. 断块油气田, 2021, 28(2): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102010.htm

    ZHAO Jiarui, ZHU Haihua, FENG Xiaozhe, et al. Characteristics of member 7 mica of Yanchang Formation in Ordos Basin and its effects on reservoirs[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102010.htm
    [55]
    付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htm

    FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htm
    [56]
    白莹, 白斌, 徐旺林, 等. 鄂尔多斯盆地南部延长组7段页岩孔隙特征及页岩油赋存方式[J]. 石油学报, 2022, 43(10): 1395-1408. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202210003.htm

    BAI Ying, BAI Bin, XU Wanglin, et al. Pore characteristics of shale and occurrence mode of shale oil in member 7 of Yanchang Formation in southern Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(10): 1395-1408. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202210003.htm
    [57]
    肖玲, 陈曦, 雷宁, 等. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202302008.htm

    XIAO Ling, CHEN Xi, LEI Ning, et al. Characteristics and main controlling factors of shale oil reservoirs of Triassic Chang 7 member in Heshui area, Ordos Basin[J]. Lithologic Reservoirs, 2023, 35(2): 80-93. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202302008.htm
    [58]
    王恩泽, 吴忠宝, 宋彦辰, 等. 鄂尔多斯盆地庆城地区长7段致密砂岩成岩演化与孔隙结构特征[J]. 北京大学学报(自然科学版), 2022, 58(2): 249-260. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ202202007.htm

    WANG Enze, WU Zhongbao, SONG Yanchen, et al. Pore structure and diagenetic evolution features of member-7 of Yanchang Formation in Qingcheng area, Ordos Basin, NW China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(2): 249-260. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ202202007.htm
    [59]
    王淼, 陈勇, 徐兴友, 等. 泥质岩中纤维状结构脉体成因机制及其与油气活动关系研究进展[J]. 地球科学进展, 2015, 30(10): 1107-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201510008.htm

    WANG Miao, CHEN Yong, XU Xingyou, et al. Progress on formation mechanism of the fibrous veins in mudstone and its implications to hydrocarbon migration[J]. Advances in Earth Science, 2015, 30(10): 1107-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201510008.htm
    [60]
    陈鑫, 戚明辉, 邓翔, 等. 鄂尔多斯盆地南部延长组7段泥页岩储层特征及其控制因素[J]. 科学技术与工程, 2023, 23(22): 9460-9469. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202322015.htm

    CHEN Xin, QI Minghui, DENG Xiang, et al. Mineral composition characteristics and its controlling factors in shale of Chang 7 member of Yanchang Formation in the south of Ordos Basin[J]. Science Technology and Engineering, 2023, 23(22): 9460-9469. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202322015.htm
    [61]
    PU Boling, DONG Dazhong, ZHAO Jingzhou, et al. Differences between marine and terrestrial shale gas accumulation: taking Longmaxi shale Sichuan Basin and Yanchang shale Ordos Basin as examples[J]. Acta Geologica Sinica (English Edition), 2015, 89(S1): 200-206. doi: 10.1111/1755-6724.12303_22
    [62]
    昝灵, 白鸾羲, 印燕铃, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油基本特征及成因分析[J]. 石油实验地质, 2023, 45(2): 356-365. doi: 10.11781/sysydz202302356

    ZAN Ling, BAI Luanxi, YIN Yanling, et al. Basic characteristics and genesis analysis of shale oil in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2023, 45(2): 356-365. doi: 10.11781/sysydz202302356
    [63]
    黄伟凯, 周新平, 刘江艳, 等. 鄂尔多斯盆地华池地区延长组7段页岩油储层孔隙结构特征及控制因素[J]. 天然气地球科学, 2022, 33(12): 1951-1968. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202212004.htm

    HUANG Weikai, ZHOU Xinping, LIU Jiangyan, et al. Characteristics and controlling factors of pore structure of shale in the seventh member of Yanchang Formation in Huachi area, Ordos Basin[J]. Natural Gas Geoscience, 2022, 33(12): 1951-1968. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202212004.htm
    [64]
    葛德发. 鄂尔多斯盆地陇东地区延长组长7段页岩油储层研究[D]. 北京: 中国石油大学(北京), 2019.

    GE Defa. Study on the characteristics of Chang 7 reservoir of Yanchang Formation in Longdong area, Erdos basins[D]. Beijing: China University of Petroleum (Beijing), 2019.
    [65]
    SANZ P F, POLLARD D D, ALLWARDT P F, et al. Mechanical models of fracture reactivation and slip on bedding surfaces during folding of the asymmetric anticline at Sheep Mountain, Wyoming[J]. Journal of Structural Geology, 2008, 30(9): 1177-1191.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (244) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return