Volume 46 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
LI Lifei, REN Qiqiang, YANG Tian, CAI Laixing, LI Zheng, CUI Rong. Development characteristics of structural fractures in tight sandstone reservoirs under multi-level configuration interfaces: a case study of second member of Xujiahe Formation in Western Sichuan Depression[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 722-734. doi: 10.11781/sysydz202404722
Citation: LI Lifei, REN Qiqiang, YANG Tian, CAI Laixing, LI Zheng, CUI Rong. Development characteristics of structural fractures in tight sandstone reservoirs under multi-level configuration interfaces: a case study of second member of Xujiahe Formation in Western Sichuan Depression[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 722-734. doi: 10.11781/sysydz202404722

Development characteristics of structural fractures in tight sandstone reservoirs under multi-level configuration interfaces: a case study of second member of Xujiahe Formation in Western Sichuan Depression

doi: 10.11781/sysydz202404722
  • Received Date: 2023-12-22
  • Rev Recd Date: 2024-06-05
  • Publish Date: 2024-07-28
  • Fractures are crucial for the high and stable production of natural gas from the tight sandstone reservoirs in the second member of the Xujiahe Formation in the Western Sichuan Depression, Sichuan Basin. The development of these fractures is controlled by the configuration interfaces of sand bodies formed under different sedimentary environments. Through field outcrop surveys, core observations, logging identification, and detailed characterization of lithofacies, a classification scheme for sand body configuration interfaces was proposed for the second member of the Xujiahe Formation in the Western Sichuan Depression. These interfaces were identified and classified into second to fourth levels. The study clarified the characteristics and geological significance of fractures under different levels of configuration interfaces. These interfaces controlled the occurrence, opening degree, development degree, and storage-permeability capacities of reservoir fractures. The effective control ranges of the second and third level interfaces were 0-0.35 m and 0-3 m, respectively, while the fourth level interface had a larger control range (0-11 m). The development characteristics of fractures differed under different configuration interfaces. Specifically, fractures were underdeveloped at the second level interfaces; fairly developed at the fourth level; and most developed at the third level, primarily as low-angle dipping fractures. Fracture orientations were predominantly NNE-SSW, SEE-NWW, and SSE-NNW, with more fractures having larger openings (>0.04 mm) and larger dip angle. There was a clear positive correlation between core porosity and permeability in the fracture development under the control of the multi-level interfaces. Fractures at the third level interface had the strongest improvement effect on reservoir physical properties and made the highest contribution to oil and gas production, followed by the fourth level interface, with the second level interface being the least effective. Clarifying the control of different levels of configuration interfaces on fracture development is conducive to the effective development of tight sandstone gas reservoirs in the study area.

     

  • All authors disclose no relevant conflict of interests.
    LI Lifei was responsible for thesis writing. REN Qiqiang was responsible for the conception and modification of the paper. YANG Tian and CAI Laixing were responsible for proposing the architecture interface division scheme. LI Zheng and CUI Rong assisted in data collection. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    魏国齐, 张福东, 李君, 等. 中国致密砂岩气成藏理论进展[J]. 天然气地球科学, 2016, 27(2): 199-210. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201602002.htm

    WEI Guoqi, ZHANG Fudong, LI Jun, et al. New progress of tight sand gas accumulation theory and favorable exploration zones in China[J]. Natural Gas Geoscience, 2016, 27(2): 199-210. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201602002.htm
    [2]
    贾爱林, 位云生, 郭智, 等. 中国致密砂岩气开发现状与前景展望[J]. 天然气工业, 2022, 42(1): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202201008.htm

    JIA Ailin, WEI Yunsheng, GUO Zhi, et al. Development status and prospect of tight sandstone gas in China[J]. Natural Gas Industry, 2022, 42(1): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202201008.htm
    [3]
    郑和荣, 刘忠群, 徐士林, 等. 四川盆地中国石化探区须家河组致密砂岩气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2021, 42(4): 765-783. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202104002.htm

    ZHENG Herong, LIU Zhongqun, XU Shilin, et al. Progress and key research directions of tight gas exploration and development in Xujiahe Formation, SINOPEC exploration areas, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 765-783. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202104002.htm
    [4]
    刘忠群. 四川盆地须家河组深层致密砂岩气藏难动用储量开发技术新进展[J]. 石油与天然气地质, 2022, 43(5): 1271-1272. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205021.htm

    LIU Zhongqun. New progress in development technology of difficult-to-produce reserves in deep tight sandstone gas reservoirs of Xujiahe Formation in Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(5): 1271-1272. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205021.htm
    [5]
    朱如凯, 邹才能, 张鼐, 等. 致密砂岩气藏储层成岩流体演化与致密成因机理: 以四川盆地上三叠统须家河组为例[J]. 中国科学(D辑: 地球科学), 2009, 39(3): 327-339. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200903009.htm

    ZHU Rukai, ZOU Caineng, ZHANG Nai, et al. Diagenetic fluid evolution and densification mechanism of tight sandstone gas reservoirs: a case study of the Upper Triassic Xujiahe Formation in the Sichuan Basin[J]. Science China (Series D: Earth Sciences), 2009, 39(3): 327-339. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200903009.htm
    [6]
    刘和甫, 梁慧社, 蔡立国, 等. 川西龙门山冲断系构造样式与前陆盆地演化[J]. 地质学报, 1994(2): 101-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199402000.htm

    LIU Hefu, LIANG Huishe, CAI Liguo, et al. Structural styles of the Longmenshan thrust belt and evolution of the foreland basin in western Sichuan province, China[J]. Acta Geologica Sinica, 1994(2): 101-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199402000.htm
    [7]
    杨克明, 叶军, 吕正祥. 川西坳陷上三叠统须家河组天然气分布及成藏特征[J]. 石油与天然气地质, 2004, 25(5): 501-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200405005.htm

    YANG Keming, YE Jun, LYU Zhengxiang. Characteristics of gas distribution and reservoiring in Upper Triassic Xujiahe Formation in Western Sichuan Depression[J]. Oil & Gas Geology, 2004, 25(5): 501-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200405005.htm
    [8]
    邓康龄, 余福林. 川西坳陷的复合构造与油气关系[J]. 石油与天然气地质, 2005, 26(2): 214-219. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200502014.htm

    DENG Kangling, YU Fulin. Compound structures and hydrocarbons in Western Sichuan Depression[J]. Oil & Gas Geology, 2005, 26(2): 214-219. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200502014.htm
    [9]
    ZENG Lianbo, LI Xiangyang. Fractures in sandstone reservoirs with ultra-low permeability: a case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China[J]. AAPG Bulletin, 2009, 93(4): 461-477. doi: 10.1306/09240808047
    [10]
    丁文龙, 王兴华, 胡秋嘉, 等. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201507001.htm

    DING Wenlong, WANG Xinghua, HU Qiujia, et al. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 2015, 30(7): 737-750. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201507001.htm
    [11]
    SHANG Xiaofei, LONG Shengxiang, DUAN Taizhong. Fracture system in shale gas reservoir: prospect of characterization and modeling techniques[J]. Journal of Natural Gas Geoscience, 2021, 6(3): 157-172. doi: 10.1016/j.jnggs.2021.06.001
    [12]
    张贵生. 川西坳陷须家河组致密砂岩储层裂缝特征[J]. 天然气工业, 2005, 25(7): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200507006.htm

    ZHANG Guisheng. Characteristics of fractures in the tight sandstone reservoirs of Xujiahe Formation in West Sichuan Depression[J]. Natural Gas Industry, 2005, 25(7): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200507006.htm
    [13]
    ZHANG Yunzhao, ZENG Lianbo, LYU Wenya, et al. Natural fractures in tight gas sandstones: a case study of the Upper Triassic Xujiahe Formation in Xinchang gas field, western Sichuan Basin, China[J]. Geological Magazine, 2021, 158(9): 1543-1560. doi: 10.1017/S001675682100008X
    [14]
    李王鹏, 刘忠群, 胡宗全, 等. 四川盆地川西坳陷新场须家河组二段致密砂岩储层裂缝发育特征及主控因素[J]. 石油与天然气地质, 2021, 42(4): 884-897. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202104011.htm

    LI Wangpeng, LIU Zhongqun, HU Zongquan, et al. Characteristics of and main factors controlling the tight sandstone reservoir fractures in the 2nd member of Xujiahe Formation in Xinchang area, Western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 884-897. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202104011.htm
    [15]
    姜自然, 陆正元, 刘斐, 等. 川西拗陷新场气田须家河组宽大裂缝及其油气地质意义[J]. 成都理工大学学报(自然科学版), 2023, 50(1): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202301003.htm

    JIANG Ziran, LU Zhengyuan, LIU Fei, et al. Study of Xujiahe Formation macro-fractures in Xinchang Gas Field in Western Sichuan Depression and their oil & gas geological significance[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(1): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202301003.htm
    [16]
    张庄, 章顺利, 何秀彬, 等. 川西坳陷须家河组二段裂缝发育特征及形成主控因素: 以合兴场气田为例[J]. 油气藏评价与开发, 2023, 13(5): 581-590. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202305005.htm

    ZHANG Zhuang, ZHANG Shunli, HE Xiubin, et al. Development characteristics of fractures in the second member of Xujiahe Formation in Hexingchang gas field, Western Sichuan Depression and their main control factors of formation: a case study of Hexingchang gas field[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 581-590. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202305005.htm
    [17]
    白斌, 邹才能, 朱如凯, 等. 川西南部须二段致密砂岩储层构造裂缝特征及其形成期次[J]. 地质学报, 2012, 86(11): 1841-1846. doi: 10.3969/j.issn.0001-5717.2012.11.014

    BAI Bin, ZOU Caineng, ZHU Rukai, et al. Characteristics and formation stage-times of structural fractures in tight sandstone reservoir of the 2nd member of Xujiahe Formation in southwestern Sichuan Basin[J]. Acta Geologica Sinica, 2012, 86(11): 1841-1846. doi: 10.3969/j.issn.0001-5717.2012.11.014
    [18]
    李阳兵, 张筠, 徐炳高, 等. 川西地区须家河组裂缝成因类型及形成期次的成像测井分析[J]. 测井技术, 2010, 34(4): 348-351. doi: 10.3969/j.issn.1004-1338.2010.04.009

    LI Yangbing, ZHANG Yun, XU Binggao, et al. On the origin types and formation periods of fractures in Xujiahe Formation in west Sichuan region[J]. Well Logging Technology, 2010, 34(4): 348-351. doi: 10.3969/j.issn.1004-1338.2010.04.009
    [19]
    马旭杰, 周文, 唐瑜, 等. 川西新场地区须家河组二段气藏天然裂缝形成期次的确定[J]. 天然气工业, 2013, 33(8): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201308004.htm

    MA Xujie, ZHOU Wen, TANG Yu, et al. Timing of natural fractures formed in the gas reservoirs of the 2nd member of Xujiahe Fm in the Xinchang area, western Sichuan Basin[J]. Natural Gas Industry, 2013, 33(8): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201308004.htm
    [20]
    曾联波, 李跃纲, 张贵斌, 等. 川西南部上三叠统须二段低渗透砂岩储层裂缝分布的控制因素[J]. 中国地质, 2007, 34(4): 622-627. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200704011.htm

    ZENG Lianbo, LI Yuegang, ZHANG Guibin, et al. Controlling factors for fracture distribution in the low-permeability sandstone reservoir of the second member of the Upper Triassic Xujiahe Formation in the south of western Sichuan[J]. Geology in China, 2007, 34(4): 622-627. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200704011.htm
    [21]
    王春梅, 黄思静, 孙治雷, 等. 川西坳陷须家河组致密砂岩储层裂缝发育特征及其成因: 以孝泉—新场—合兴场地区为例[J]. 天然气工业, 2011, 31(8): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201108011.htm

    WANG Chunmei, HUANG Sijing, SUN Zhilei, et al. Characteristics and origin of fractures in tight sandstone reservoirs of Xujiahe Formation in the Western Sichuan Depression: a case study in the Xiaoquan-Xinchang-Hexingchang area[J]. Natural Gas Industry, 2011, 31(8): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201108011.htm
    [22]
    阎丽妮, 朱宏权, 叶素娟, 等. 新场构造带须家河组二段"饼状"缝的成因及油气地质意义[J]. 油气藏评价与开发, 2023, 13(5): 559-568. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202305003.htm

    YAN Lini, ZHU Hongquan, YE Sujuan, et al. Origin of "cake-like" fractures and its significance for gas exploration in the second member of Xujiahe Formation of Xinchang structural belt[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 559-568. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202305003.htm
    [23]
    张小菊, 邓虎成, 伏美燕, 等. 多级界面约束下构型对储层非均质性控制作用: 以川西沙溪庙组曲流河为例[J/OL]. 沉积学报, (2022-9-30). https://doi.org/10.14027/j.issn.1000-0550.2022.105.

    ZHANG Xiaoju, DENG Hucheng, FU Meiyan, et al. The control of architecture on reservoir heterogeneity under multi-level interface constraints: taking the meandering river of Shaximiao Formation in western Sichuan as an example[J/OL]. Acta Sedimentologica Sinica, (2022-9-30). https://doi.org/10.14027/j.issn.1000-0550.2022.105.
    [24]
    曾联波, 赵继勇, 朱圣举, 等. 岩层非均质性对裂缝发育的影响研究[J]. 自然科学进展, 2008, 18(2): 216-220. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200802017.htm

    ZENG Lianbo, ZHAO Jiyong, ZHU Shengju, et al. Study on the influence of rock heterogeneity on fracture development[J]. Progress of Natural Science, 2008, 18(2): 216-220. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200802017.htm
    [25]
    赵向原, 吕文雅, 王策, 等. 低渗透砂岩油藏注水诱导裂缝发育的主控因素: 以鄂尔多斯盆地安塞油田W区长6油藏为例[J]. 石油与天然气地质, 2020, 41(3): 586-595. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003015.htm

    ZHAO Xiangyuan, LYU Wenya, WANG Ce, et al. Major factors controlling waterflooding-induced fracture development in low-permeability reservoirs: a case study of Chang 6 reservoir in W block in Ansai oilfield, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(3): 586-595. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003015.htm
    [26]
    ALLEN J R L. Studies in fluviatile sedimentation: bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the Brownstones (L. Devonian), Welsh Borders[J]. Sedimentary Geology, 1983, 33(4): 237-293.
    [27]
    MIALL A D. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits[J]. Earth-Science Reviews, 1985, 22(4): 261-308.
    [28]
    MIALL A D. Reservoir heterogeneities in fluvial sandstones: lessons from outcrop studies[J]. AAPG Bulletin, 1988, 72(6): 682-697.
    [29]
    MIALL A D. The geology of fluvial deposits[M]. New York, Berlin: Springer, 1996.
    [30]
    MIALL A D. Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development: a reality check[J]. AAPG Bulletin, 2006, 90(7): 989-1002.
    [31]
    吴胜和, 纪友亮, 岳大力, 等. 碎屑沉积地质体构型分级方案探讨[J]. 高校地质学报, 2013, 19(1): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201301003.htm

    WU Shenghe, JI Youliang, YUE Dali, et al. Discussion on hierarchical scheme of architectural units in clastic deposits[J]. Geological Journal of China Universities, 2013, 19(1): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201301003.htm
    [32]
    胡光义, 王海峰, 范廷恩, 等. 海上油田河流相复合砂体构型级次解析[J]. 古地理学报, 2021, 23(4): 810-823. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202104010.htm

    HU Guangyi, WANG Haifeng, FAN Tingen, et al. Analysis of fluvial compound sand-body architecture hierarchy in offshore oil field[J]. Journal of Palaeogeography, 2021, 23(4): 810-823. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202104010.htm
    [33]
    GAO Shuai, CHEN Shumin, PU Hui, et al. Fine characterization of large composite channel sandbody architecture and its control on remaining oil distribution: a case study of alkaline-surfactant- polymer (ASP) flooding test area in Xingshugang oilfield, China[J]. Journal of Petroleum Science and Engineering, 2019, 175: 363-374.
    [34]
    王海峰, 范廷恩, 胡光义, 等. 基于地震识别复合砂体构型地质模型的剩余油开发井网井距规律: 以渤海Q油田明化镇组R13油层为例[J]. 东北石油大学学报, 2021, 45(5): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202105005.htm

    WANG Haifeng, FAN Tingen, HU Guangyi, et al. Well network and well spacing pattern in remaining oil recovery based on geological pattern with seismic-identified complex sand architecture interfaces: taking Minghuazhen Formation R13 oil layer in Bohai Q oilfield for example[J]. Journal of Northeast Petroleum University, 2021, 45(5): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202105005.htm
    [35]
    王海峰, 胡光义, 范廷恩, 等. 基于地震属性的海上复合砂体构型界面建模方法研究[J]. 石油物探, 2021, 60(6): 1016-1025. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT202106015.htm

    WANG Haifeng, HU Guangyi, FAN Tingen, et al. Reservoir modeling of offshore composite sand architecture interface based on seismic attributes[J]. Geophysical Prospecting for Petroleum, 2021, 60(6): 1016-1025. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT202106015.htm
    [36]
    罗贺元, 罗水亮, 李林祥, 等. 孤东油田四区馆陶组曲流河储层构型表征及对剩余油的控制[J]. 大庆石油地质与开发, 2023, 42(1): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202301013.htm

    LUO Heyuan, LUO Shuiliang, LI Linxiang, et al. Characterization of meandering river reservoir architecture and control on remaining oil in Guantao Formation of block 4 in Gudong oilfield[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(1): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202301013.htm
    [37]
    叶素娟, 李嵘, 张庄. 川西坳陷中段上侏罗统蓬莱镇组物源及沉积体系研究[J]. 沉积学报, 2014, 32(5): 930-940. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201405016.htm

    YE Sujuan, LI Rong, ZHANG Zhuang. Provenance analysis and depositional system of the Upper Jurassic Penglaizhen Formation in the middle part of western Sichuan, China[J]. Acta Sedimentologica Sinica, 2014, 32(5): 930-940. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201405016.htm
    [38]
    刘志远, 李浩, 武清钊, 等. 致密砂岩裂缝测井识别特色技术及其应用效果: 以四川盆地川西坳陷新场气田上三叠统须家河组二段为例[J]. 石油与天然气地质, 2021, 42(4): 981-991. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202104019.htm

    LIU Zhiyuan, LI Hao, WU Qingzhao, et al. Tight sandstone fracture logging identification technology and its application effect: taking the second member of the Upper Triassic Xujiahe Formation in the Xinchang Gas Field, Western Sichuan Depression, Sichuan Basin as an example[J]. Oil & Gas Geology, 2021, 42(4): 981-991. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202104019.htm
    [39]
    吴小奇, 周小进, 陈迎宾, 等. 四川盆地川西坳陷上三叠统须家河组烃源岩分子地球化学特征[J]. 石油实验地质, 2022, 44(5): 854-865. doi: 10.11781/sysydz202205854

    WU Xiaoqi, ZHOU Xiaojin, CHEN Yingbin, et al. Molecular characteristics of source rocks in Upper Triassic Xujiahe Formation, Western Sichuan Depression, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 854-865. doi: 10.11781/sysydz202205854
    [40]
    李智武, 刘树根, 陈洪德, 等. 川西坳陷复合—联合构造及其对油气的控制[J]. 石油勘探与开发, 2011, 38(5): 538-551. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201105006.htm

    LI Zhiwu, LIU Shugen, CHEN Hongde, et al. Structural superimposition and conjunction and its effects on hydrocarbon accumulation in the Western Sichuan Depression[J]. Petroleum Exploration and Development, 2011, 38(5): 538-551. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201105006.htm
    [41]
    刘殊, 任兴国, 姚声贤, 等. 四川盆地上三叠统须家河组气藏分布与构造体系的关系[J]. 天然气工业, 2018, 38(11): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201811001.htm

    LIU Shu, REN Xingguo, YAO Shengxian, et al. Relationship between gas reservoir distribution and structural system of Upper Triassic Xujiahe Fm in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(11): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201811001.htm
    [42]
    郭迎春, 庞雄奇, 陈冬霞, 等. 川西坳陷中段须二段致密砂岩储层致密化与相对优质储层发育机制[J]. 吉林大学学报(地球科学版), 2012, 42(S2): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2004.htm

    GUO Yingchun, PANG Xiongqi, CHEN Dongxia, et al. Densification of tight gas sandstones and formation mechanism of relatively high-quality reservoir in the second member of the Xujiahe Formation, Western Sichuan Depression[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(S2): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2004.htm
    [43]
    赵文智, 王红军, 徐春春, 等. 川中地区须家河组天然气藏大范围成藏机理与富集条件[J]. 石油勘探与开发, 2010, 37(2): 146-157. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002003.htm

    ZHAO Wenzhi, WANG Hongjun, XU Chunchun, et al. Reservoir- forming mechanism and enrichment conditions of the extensive Xujiahe Formation gas reservoirs, central Sichuan Basin[J]. Petroleum Exploration and Development, 2010, 37(2): 146-157. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002003.htm
    [44]
    吴胜和. 储层表征与建模[M]. 北京: 石油工业出版社, 2010: 136-170.

    WU Shenghe. Reservoir characterization and modeling[M]. Beijing: Petroleum Industry Press, 2010: 136-170.
    [45]
    国家能源局. 气藏描述方法: SY/T 6110—2016[S]. 北京: 石油工业出版社, 2016: 1-9.

    National Energy Administration. The method for gas reservoir description: SY/T 6110-2016[S]. Beijing: Petroleum Industry Press, 2016: 1-9.
    [46]
    芦凤明, 蔡明俊, 张阳, 等. 碎屑岩储层构型分级方案与研究方法探讨[J]. 岩性油气藏, 2020, 32(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202006001.htm

    LU Fengming, CAI Mingjun, ZHANG Yang, et al. Discussion on architecture classification scheme and research methods of clastic reservoir[J]. Lithologic Reservoirs, 2020, 32(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202006001.htm
    [47]
    曾联波, 王正国, 肖淑容, 等. 中国西部盆地挤压逆冲构造带低角度裂缝的成因及意义[J]. 石油学报, 2009, 30(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200901012.htm

    ZENG Lianbo, WANG Zhengguo, XIAO Shurong, et al. The origin and geological significance of low dip-angle fractures in the thrust zones of the western basins of China[J]. Acta Petrolei Sinica, 2009, 30(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200901012.htm
    [48]
    刘永华, 倪朋勃, 黄小刚. 录井资料在西湖凹陷始新统平湖组气层评价中的应用[J]. 录井工程, 2022, 33(3): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGZ202203008.htm

    LIU Yonghua, NI Pengbo, HUANG Xiaogang. Application of mud logging data in gas layer evaluation of Eocene Pinghu Formation in Xihu Sag[J]. Mud Logging Engineering, 2022, 33(3): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGZ202203008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (226) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return