Volume 46 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
FANG Maojun, DU Xulin, BAI Yuhu, LI Hao, ZHANG Hao, ZHU Haiyan. Three-dimensional physical simulation experiments on large-scale hydraulic fracturing in multi-thin interbedded tight sandstone reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 786-798. doi: 10.11781/sysydz202404786
Citation: FANG Maojun, DU Xulin, BAI Yuhu, LI Hao, ZHANG Hao, ZHU Haiyan. Three-dimensional physical simulation experiments on large-scale hydraulic fracturing in multi-thin interbedded tight sandstone reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 786-798. doi: 10.11781/sysydz202404786

Three-dimensional physical simulation experiments on large-scale hydraulic fracturing in multi-thin interbedded tight sandstone reservoirs

doi: 10.11781/sysydz202404786
  • Received Date: 2024-02-29
  • Rev Recd Date: 2024-06-26
  • Publish Date: 2024-07-28
  • The Linxing gas field on the northeastern edge of Ordos Basin is mainly composed of multi-thin interbedded tight sandstone reservoirs. These reservoirs feature complex lithologies and low permeability, and are affected by multiple factors with unclear mechanisms, leading to difficulties in hydraulic fracturing operations and significant variability in operation outcomes. Therefore, this study designed and conducted a series of large-scale three-dimensional (3D) physical simulation experiments of hydraulic fracturing under different geological conditions, focusing on different rock components, clay contents, particle sizes, sedimentary cycles, and planar and longitudinal heterogeneities of the tight sandstone reservoirs in the Linxing gas field. According to the similarity criteria, the basic parameters of the experiments were determined by referencing the triaxial geostress, rock strength, wellbore structural parameters, and on-site fracturing operational parameters of the Permian Shihezi Formation. Based on the characteristics of the main reservoirs in typical wells of the Linxing gas field, 15 cubic rock cores were produced to account for different rock components, clay contents, particle sizes, sedimentary cycle combinations, and planar and longitudinal heterogeneity combinations. Fifteen sets of hydraulic fracturing simulation experiments were conducted, and the main controlling factors affecting the propagation of hydraulic fractures were summarized by analyzing the injection pressure curves and observing the fracture surfaces of rock samples. The results indicate that rock minerals, particle sizes, sedimentary cycles, and planar and longitudinal heterogeneities have a significant impact on fracture propagation patterns in tight reservoirs. The fracture surfaces are more prone to buckling with larger sandstone particle sizes, weaker cementation, higher clay content, and stronger planar heterogeneity, increasing the expansion pressure and difficulty in sand addition. Sedimentary cycles facilitate hydraulic fractures to propagate along the cycle planes, resulting in horizontal fractures. The difficulty of breaking through in retrograde cycle interfaces is greater than in prograde cycles. Interfaces between sand and mud layers, sand and coal layers, and natural weak sandstone surfaces are easily activated, leading to "工" or "T" shaped fractures. A combination of "工", "T", and "十" shaped fractures may occur in sand-mud multi-thin interlayers. This experimental study reveals the propagation patterns of hydraulic fractures under different geological conditions, providing insights for research in similar blocks.

     

  • All authors disclose no relevant conflict of interests.
    The experiment was designed by FANG Maojun, LI Hao, and ZHU Haiyan. The experimental operation was completed by the group led by ZHU Haiyan. The manuscript was drafted and revised by DU Xulin and ZHANG Hao. The manuscript writing was guided by FANG Maojun and BAI Yuhu. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    米立军, 朱光辉. 鄂尔多斯盆地东北缘临兴—神府致密气田成藏地质特征及勘探突破[J]. 中国石油勘探, 2021, 26(3): 53-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202103005.htm

    MI Lijun, ZHU Guanghui. Geological characteristics and exploration breakthrough in Linxing-Shenfu tight gas field, northeastern Ordos Basin[J]. China Petroleum Exploration, 2021, 26(3): 53-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202103005.htm
    [2]
    吴克强, 赵志刚, 祝彦贺, 等. 鄂尔多斯盆地东北缘"双低"致密气藏差异成藏规律及勘探开发关键技术[J]. 中国海上油气, 2022, 34(4): 43-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202204004.htm

    WU Keqiang, ZHAO Zhigang, ZHU Yanhe, et al. Differential accumulation laws and key exploration and development technologies of "double-low" tight gas reservoirs in the northeastern margin of the Ordos Basin[J]. China Offshore Oil and Gas, 2022, 34(4): 43-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202204004.htm
    [3]
    王波, 齐宇, 杜凯, 等. 基于GR测井信息的层序细分及砂体预测技术: 以鄂尔多斯盆地临兴A地区上石盒子组盒四段为例[J]. 中国海上油气, 2022, 34(4): 164-174. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202204015.htm

    WANG Bo, QI Yu, DU Kai, et al. Sequence subdivision and sand bodies prediction technology based on GR logging information: taking H4 member of Upper Shihezi Formation in Linxing A area of Ordos Basin as an example[J]. China Offshore Oil and Gas, 2022, 34(4): 164-174. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202204015.htm
    [4]
    杨帆, 梅文博, 李亮, 等. 薄互层致密砂岩水力压裂裂缝扩展特征研究[J]. 煤田地质与勘探, 2023, 51(7): 61-71. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202307007.htm

    YANG Fan, MEI Wenbo, LI Liang, et al. Propagation of hydraulic fractures in thin interbedded tight sandstones[J]. Coal Geology & Exploration, 2023, 51(7): 61-71. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202307007.htm
    [5]
    LI Sanbai, FIROOZABADI A, ZHANG Dongxiao. Hydromechanical modeling of nonplanar three-dimensional fracture propagation using an iteratively coupled approach[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): e2020JB020115. doi: 10.1029/2020JB020115
    [6]
    唐慧莹, 张东旭, 刘环竭, 等. 页岩气藏水平井分段压裂缝间应力干扰全三维模拟[J]. 西安石油大学学报(自然科学版), 2019, 34(5): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201905005.htm

    TANG Huiying, ZHANG Dongxu, LIU Huanjie, et al. Three-dimensional simulation of stress interference between fractures in segmented fracturing process of horizontal wells in shale gas reservoirs[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2019, 34(5): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201905005.htm
    [7]
    唐煊赫, 朱海燕, 李奎东. 基于FEM-DFN的页岩气储层水力压裂复杂裂缝交错扩展模型[J]. 天然气工业, 2023, 43(1): 162-176. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202301014.htm

    TANG Xuanhe, ZHU Haiyan, LI Kuidong. A FEM-DFN-based complex fracture staggered propagation model for hydraulic fracturing of shale gas reservoirs[J]. Natural Gas Industry, 2023, 43(1): 162-176. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202301014.htm
    [8]
    PALUSZNY A, THOMAS R N, SACEANU M C, et al. Hydro-mechanical interaction effects and channeling in three-dimensional fracture networks undergoing growth and nucleation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(4): 707-719.
    [9]
    师访. 岩石破裂过程的扩展有限元法研究[D]. 徐州: 中国矿业大学, 2015.

    SHI Fang. Study on the cracking process of rock using the extended finite element method[D]. Xuzhou: China University of Mining and Technology, 2015.
    [10]
    杜旭林, 程林松, 牛烺昱, 等. 基于XFEM-MBEM的嵌入式离散裂缝模型流固耦合数值模拟方法[J]. 力学学报, 2021, 53(12): 3413-3424. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202112023.htm

    DU Xulin, CHENG Linsong, NIU Langyu, et al. Numerical simulation for coupling flow and geomechanics in embedded discrete fracture model based on XFEM-MBEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3413-3424. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202112023.htm
    [11]
    YAN Chengzeng, GAO Yakun, GUO Hui. A FDEM based 3D discrete mixed seepage model for simulating fluid driven fracturing[J]. Engineering Analysis with Boundary Elements, 2022, 140: 447-463.
    [12]
    YAN Chengzeng, ZHENG Yuchen, WANG Gang. A 2D adaptive finite-discrete element method for simulating fracture and fragmentation in geomaterials[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 169: 105439.
    [13]
    侯冰, 张其星, 陈勉. 页岩储层压裂物理模拟技术进展及发展趋势[J]. 石油钻探技术, 2023, 51(5): 66-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202305008.htm

    HOU Bing, ZHANG Qixing, CHEN Mian. Status and tendency of physical simulation technology for hydraulic fracturing of shale reservoirs [J]. Petroleum Drilling Techniques, 2023, 51(5): 66-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202305008.htm
    [14]
    侯冰, 崔壮, 曾悦. 深层致密储层大斜度井压裂裂缝扩展机制研究[J]. 岩石力学与工程学报, 2023, 42(S2): 4054-4063. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2023S2016.htm

    HOU Bin, CUI Zhuang, ZENG Yue. Experimental study on fracture propagation morphology of deviated well in tight reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S2): 4054-4063. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2023S2016.htm
    [15]
    邹雨时, 石善志, 张士诚, 等. 薄互层型页岩油储集层水力裂缝形态与支撑剂分布特征[J]. 石油勘探与开发, 2022, 49(5): 1025-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205018.htm

    ZOU Yushi, SHI Shanzhi, ZHANG Shicheng, et al. Hydraulic fracture geometry and proppant distribution in thin interbedded shale oil reservoirs[J]. Petroleum Exploration and Development, 2022, 49(5): 1025-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205018.htm
    [16]
    陈峥嵘, 齐宇, 韩磊, 等. 非均质致密储层水平井分段压裂裂缝扩展模拟[J]. 大庆石油地质与开发, 2024, 43(2): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202402007.htm

    CHEN Zhengrong, QI Yu, HAN Lei, et al. Fracture propagation simulation of horizontal well staged fracturing in heterogeneous tight reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(2): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202402007.htm
    [17]
    冯彦军. 基于真三轴物理模拟实验的水力裂缝扩展规律研究[J]. 中国矿业, 2022, 31(10): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202210018.htm

    FENG Yanjun. Study on propagation of hydraulic fracture based on true triaxial physical simulation experiment[J]. China Mining Magazine, 2022, 31(10): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202210018.htm
    [18]
    郭培峰, 周文, 邓虎成, 等. 致密储层压裂真三轴物理模拟实验及裂缝延伸规律[J]. 成都理工大学学报(自然科学版), 2020, 47(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202001006.htm

    GUO Peifeng, ZHOU Wen, DENG Hucheng, et al. Real triaxial physical simulation experiment of fracturing and the law of fracture extension in tight reservoir[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202001006.htm
    [19]
    柳贡慧, 庞飞, 陈治喜. 水力压裂模拟实验中的相似准则[J]. 石油大学学报(自然科学版), 2000, 24(5): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200005013.htm

    LIU Gonghui, PANG Fei, CHEN Zhixi. Development of scaling laws for hydraulic fracture simulation tests[J]. Journal of the University of Petroleum, China, 2000, 24(5): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200005013.htm
    [20]
    郭天魁, 刘晓强, 顾启林. 射孔井水力压裂模拟实验相似准则推导[J]. 中国海上油气, 2015, 27(3): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201503018.htm

    GUO Tiankui, LIU Xiaoqiang, GU Qilin. Deduction of similarity laws of hydraulic fracturing simulation experiments for perforated wells[J]. China Offshore Oil and Gas, 2015, 27(3): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201503018.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views (259) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return