Volume 46 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
XU Xiaotong, ZENG Lianbo, DONG Shaoqun, DIWU Pengxiang, LI Haiming, Liu Jianzhong, HAN Gaosong, XU Hui, JI Chunqiu. Fracture development characteristics and their influence on water invasion of ultra-deep tight sandstone reservoirs in Keshen gas reservoir of Kuqa Depression, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 812-822. doi: 10.11781/sysydz202404812
Citation: XU Xiaotong, ZENG Lianbo, DONG Shaoqun, DIWU Pengxiang, LI Haiming, Liu Jianzhong, HAN Gaosong, XU Hui, JI Chunqiu. Fracture development characteristics and their influence on water invasion of ultra-deep tight sandstone reservoirs in Keshen gas reservoir of Kuqa Depression, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 812-822. doi: 10.11781/sysydz202404812

Fracture development characteristics and their influence on water invasion of ultra-deep tight sandstone reservoirs in Keshen gas reservoir of Kuqa Depression, Tarim Basin

doi: 10.11781/sysydz202404812
  • Received Date: 2024-03-08
  • Rev Recd Date: 2024-06-12
  • Publish Date: 2024-07-28
  • Natural fractures are crucial factors influencing productivity and water invasion in the ultra-deep tight sandstone gas wells of the Keshen gas reservoir in the Kuqa Depression, Tarim Basin. Research on fractures is significant for understanding water invasion patterns and formulating effective water control strategies. This study investigated the development characteristics, distribution patterns, and water invasion characteristics of effective fractures using core samples, thin sections, conventional logging, imaging logging, production data, and well testing, as well as the influence of different fracture networks on water invasion. High-angle and nearly vertical shear fractures are the main fracture types. Vertically, the first member of Bashijiqike Formation (K1bs1) is predo-minantly characterized by completely filled fractures, which are ineffective fractures. Conversely, the second and third members of Bashijiqike Formation (K1bs2 and K1bs3) are mostly characterized by partially filled and unfilled fractures, which are effective fractures. Horizontally, the NNW-SSE striking effective fractures are concentrated in the western part of the gas reservoir and have larger average apertures. The eastern part has relatively deve-loped nearly E-W and NWW-SEE striking effective fractures with smaller average apertures. The more deve-loped and the larger the aperture of the effective fractures, the lower the initial water production from gas wells, with more production of condensate water. From production onset to water breakthrough, formation water is produced in various forms: sealed water, condensate water, movable water and pure formation water. The development stage, aperture and orientation of effective fractures are important factors affecting heterogeneous water invasion. Dense, highly effective fracture networks that are nearly parallel to the orientation of water invasion will accelerate the water invasion speed, resulting in significant water production and severely reducing gas well productivity. Integrating the development characteristics of effective fractures with individual well water invasion dynamics reveals three types of water invasion: rapid channeling along faults or dense fractures, slow coning along sparse fractures and slow uplift and invasion of edge-bottom water.

     

  • All authors disclose no relevant conflict of interests.
    XU Xiaotong and ZENG Lianbo were responsible for writing and revising the manuscript. ZENG Lianbo, DONG Shaoqun, DIWU Pengxiang, and LI Haiming were responsible for the overall idea and data analysis of the manuscript. XU Xiaotong, LIU Jianzhong, HAN Gaosong, XU Hui, and JI Chunqiu were responsible for data analysis and figures drawing. JI Chunqiu was responsible for proofreading the manuscript. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    贾承造. 含油气盆地深层—超深层油气勘探开发的科学技术问题[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202305001.htm

    JIA Chengzao. Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202305001.htm
    [2]
    操应长, 远光辉, 杨海军, 等. 含油气盆地深层—超深层碎屑岩油气勘探现状与优质储层成因研究进展[J]. 石油学报, 2022, 43(1): 112-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201010.htm

    CAO Yingchang, YUAN Guanghui, YANG Haijun, et al. Current situation of oil and gas exploration and research progress of the origin of high-quality reservoirs in deep-ultra-deep clastic reservoirs of petroliferous basins[J]. Acta Petrolei Sinica, 2022, 43(1): 112-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201010.htm
    [3]
    李剑, 佘源琦, 高阳, 等. 中国陆上深层—超深层天然气勘探领域及潜力[J]. 中国石油勘探, 2019, 24(4): 403-417. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201904001.htm

    LI Jian, SHE Yuanqi, GAO Yang, et al. Onshore deep and ultra-deep natural gas exploration fields and potentials in China[J]. China Petroleum Exploration, 2019, 24(4): 403-417. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201904001.htm
    [4]
    张荣虎, 王珂, 王俊鹏, 等. 塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J]. 天然气地球科学, 2018, 29(9): 1264-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809005.htm

    ZHANG Ronghu, WANG Ke, WANG Junpeng, et al. Reservoir geological model of fracture low porosity sandstone of Keshen 8 wellblock in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(9): 1264-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809005.htm
    [5]
    贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm

    JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm
    [6]
    蒋凌志, 顾家裕, 郭彬程. 中国含油气盆地碎屑岩低渗透储层的特征及形成机理[J]. 沉积学报, 2004, 22(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200401002.htm

    JIANG Lingzhi, GU Jiayu, GUO Bincheng. Characteristics and mechanism of low permeability clastic reservoir in Chinese petroliferous basin[J]. Acta Sedimentologica Sinica, 2004, 22(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200401002.htm
    [7]
    曾联波, 周天伟. 塔里木盆地库车坳陷储层裂缝分布规律[J]. 天然气工业, 2004, 24(9): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200409007.htm

    ZENG Lianbo, ZHOU Tianwei. Reservoir fracture distribution law of Kuche Depression in Talimu Basin[J]. Natural Gas Industry, 2004, 24(9): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200409007.htm
    [8]
    王俊鹏, 张惠良, 张荣虎, 等. 裂缝发育对超深层致密砂岩储层的改造作用: 以塔里木盆地库车坳陷克深气田为例[J]. 石油与天然气地质, 2018, 39(1): 77-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202102008.htm

    WANG Junpeng, ZHANG Huiliang, ZHANG Ronghu, et al. Enhancement of ultra-deep tight sandstone reservoir quality by fractures: a case study of Keshen gas field in Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(1): 77-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202102008.htm
    [9]
    魏聪, 张承泽, 陈东, 等. 塔里木盆地克深2气藏断层、裂缝、基质"三重介质"渗流及开发机理[J]. 天然气地球科学, 2019, 30(12): 1684-1693. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912002.htm

    WEI Cong, ZHANG Chengze, CHEN Dong, et al. Seepage characteristics and development mechanism characterized by faults-fracture-pores "triple medium" in Keshen 2 gas reservoirs, Tarim Basin[J]. Natural Gas Geoscience, 2019, 30(12): 1684-1693. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912002.htm
    [10]
    刘群明, 唐海发, 吕志凯, 等. 超深层气藏裂缝发育模式及水侵规律: 以塔里木盆地克深2、9、8气藏为例[J]. 天然气地球科学, 2023, 34(6): 963-972. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202306002.htm

    LIU Qunming, TANG Haifa, LÜ Zhikai, et al. Study on gas-water distribution and water invasion law under different fracture development models in ultra-deep gas reservoir: taking Keshen 2, 9 and 8 gas reservoirs of Tarim Basin as examples[J]. Natural Gas Geoscience, 2023, 34(6): 963-972. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202306002.htm
    [11]
    方建龙, 郭平, 肖香姣, 等. 高温高压致密砂岩储集层气水相渗曲线测试方法[J]. 石油勘探与开发, 2015, 42(1): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501011.htm

    FANG Jianlong, GUO Ping, XIAO Xiangjiao, et al. Gas-water relative permeability measurement of high temperature and high pressure tight gas reservoirs[J]. Petroleum Exploration and Development, 2015, 42(1): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501011.htm
    [12]
    李明强, 马梓珂, 唐松, 等. 四川盆地磨溪地区龙王庙组碳酸盐岩气藏水侵规律[J]. 天然气地球科学, 2024, 35(2): 366-378. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202402014.htm

    LI Mingqiang, MA Zike, TANG Song, et al. Water invasion law of carbonate gas reservoir of Longwangmiao Formation in Moxi area, Sichuan Basin[J]. Natural Gas Geoscience, 2024, 35(2): 366-378. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202402014.htm
    [13]
    张惠良, 张荣虎, 杨海军, 等. 超深层裂缝—孔隙型致密砂岩储集层表征与评价: 以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J]. 石油勘探与开发, 2014, 41(2): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402005.htm

    ZHANG Huiliang, ZHANG Ronghu, YANG Haijun, et al. Characte-rization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs: a case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin, Tarim, NW China[J]. Petroleum Exploration and Development, 2014, 41(2): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402005.htm
    [14]
    赵力彬, 张同辉, 杨学君, 等. 塔里木盆地库车坳陷克深区块深层致密砂岩气藏气水分布特征与成因机理[J]. 天然气地球科学, 2018, 29(4): 500-509. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201804006.htm

    ZHAO Libin, ZHANG Tonghui, YANG Xuejun, et al. Gas-water distribution characteristics and formation mechanics in deep tight sandstone gas reservoirs of Keshen block, Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(4): 500-509. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201804006.htm
    [15]
    WANG Rujun, ZHANG Chengze, CHEN Dong, et al. Microscopic seepage mechanism of gas and water in ultra-deep fractured sandstone gas reservoirs of low porosity: a case study of Keshen gas field in Kuqa Depression of Tarim Basin, China[J]. Frontiers in Earth Science, 2022, 10: 893701.
    [16]
    ZHANG Ronghu, WANG Ke, ZENG Qinglu, et al. Effectiveness and petroleum geological significance of tectonic fractures in the ultra-deep zone of the Kuqa foreland thrust belt: a case study of the Cretaceous Bashijiqike Formation in the Keshen gas field[J]. Petroleum Science, 2021, 18(3): 728-741.
    [17]
    ZENG Lianbo, WANG Hongjun, GONG Lei, et al. Impacts of the tectonic stress field on natural gas migration and accumulation: a case study of the Kuqa Depression in the Tarim Basin, China[J]. Marine and Petroleum Geology, 2010, 27(7): 1616-1627.
    [18]
    曾联波, 谭成轩, 张明利. 塔里木盆地库车坳陷中新生代构造应力场及其油气运聚效应[J]. 中国科学(D辑: 地球科学), 2004, 34(增刊1): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2004S1010.htm

    ZENG Lianbo, TAN Chengxuan, ZHANG Mingli. Cenozoic and Mesozoic tectonic stress field and its effect of oil and gas migration in Kuqa Depression, Tarim Basin[J]. Science in China (SeriesD: Earth Sciences), 2004, 34(S1): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2004S1010.htm
    [19]
    巩磊, 高铭泽, 曾联波, 等. 影响致密砂岩储层裂缝分布的主控因素分析: 以库车前陆盆地侏罗系—新近系为例[J]. 天然气地球科学, 2017, 28(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702003.htm

    GONG Lei, GAO Mingze, ZENG Lianbo, et al. Controlling factors on fracture development in the tight sandstone reservoirs: a case study of Jurassic-Neogene in the Kuqa Foreland Basin[J]. Natural Gas Geoscience, 2017, 28(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702003.htm
    [20]
    王珂, 杨海军, 李勇, 等. 库车坳陷克深气田致密砂岩储层构造裂缝形成序列与分布规律[J]. 大地构造与成矿学, 2020, 44(1): 30-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202001003.htm

    WANG Ke, YANG Haijun, LI Yong, et al. Formation sequence and distribution of structural fractures in compact sandstone reservoir of Keshen gas field in Kuqa Depression, Tarim Basin[J]. Geotectonica et Metallogenia, 2020, 44(1): 30-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202001003.htm
    [21]
    冯建伟, 赵力彬, 王焰东. 库车坳陷克深气田超深层致密储层产能控制因素[J]. 石油学报, 2020, 41(4): 478-488. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004012.htm

    FENG Jianwei, ZHAO Libin, WANG Yandong. Controlling factors for productivity of ultra-deep tight reservoirs in Keshen gas field, Kuqa Depression[J]. Acta Petrolei Sinica, 2020, 41(4): 478-488. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004012.htm
    [22]
    冯异勇, 贺胜宁. 裂缝性底水气藏气井水侵动态研究[J]. 天然气工业, 1998, 18(3): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG803.008.htm

    FENG Yiyong, HE Shengning. A research on water invasion performance of the gas wells in fractured bottom water reservoir[J]. Natural Gas Industry, 1998, 18(3): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG803.008.htm
    [23]
    贾爱林, 唐海发, 韩永新, 等. 塔里木盆地库车坳陷深层大气田气水分布与开发对策[J]. 天然气地球科学, 2019, 30(6): 908-918. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201906014.htm

    JIA Ailin, TANG Haifa, HAN Yongxin, et al. The distribution of gas and water and development strategy for deep-buried gasfield in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2019, 30(6): 908-918. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201906014.htm
    [24]
    韩志锐, 曾联波, 高志勇. 库车前陆盆地秋里塔格构造带东、西段构造变形与储层物性的差异性[J]. 天然气地球科学, 2014, 25(4): 508-515. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201404005.htm

    HAN Zhirui, ZENG Lianbo, GAO Zhiyong. Difference of structural deformation and reservoirs physical property in Qiulitage structural belt of Kuqa Foreland Basin[J]. Natural Gas Geoscience, 2014, 25(4): 508-515. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201404005.htm
    [25]
    韩志锐, 曾联波, 巩磊, 等. 库车坳陷不同构造带沉降差异性及其对储层孔隙度的影响[J]. 地质科学, 2014, 49(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401008.htm

    HAN Zhirui, ZENG Lianbo, GONG Lei, et al. Difference of subsi-dence history and its influence on reservoir porosity in Kuqa Depression[J]. Chinese Journal of Geology, 2014, 49(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401008.htm
    [26]
    曾联波, 刘国平, 朱如凯, 等. 库车前陆盆地深层致密砂岩储层构造成岩强度定量评价方法[J]. 石油学报, 2020, 41(12): 1601-1609. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012012.htm

    ZENG Lianbo, LIU Guoping, ZHU Rukai, et al. A quantitative evaluation method of structural diagenetic strength of deep tight sandstone reservoirs in Kuqa Foreland Basin[J]. Acta Petrolei Sinica, 2020, 41(12): 1601-1609. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012012.htm
    [27]
    巩磊, 曾联波, 杜宜静, 等. 构造成岩作用对裂缝有效性的影响: 以库车前陆盆地白垩系致密砂岩储层为例[J]. 中国矿业大学学报, 2015, 44(3): 514-519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503017.htm

    GONG Lei, ZENG Lianbo, DU Yijing, et al. Influences of structural diagenesis on fracture effectiveness: a case study of the Cretaceous tight sandstone reservoirs of Kuqa Foreland Basin[J]. Journal of China University of Mining & Technology, 2015, 44(3): 514-519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503017.htm
    [28]
    LIU Guoping, ZENG Lianbo, ZHU Rukai, et al. Effective fractures and their contribution to the reservoirs in deep tight sandstones in the Kuqa Depression, Tarim Basin, China[J]. Marine and Petroleum Geology, 2021, 124: 104824.
    [29]
    JIA Chengzao, GU Jiayu, ZHANG Guangya. Geological constraints of giant and medium-sized gas fields in Kuqa Depression[J]. Chinese Science Bulletin, 2002, 47(S1): 47-54.
    [30]
    曾联波, 王贵文. 塔里木盆地库车山前构造带地应力分布特征[J]. 石油勘探与开发, 2005, 32(3): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200503015.htm

    ZENG Lianbo, WANG Guiwen. Distribution of earth stress in Kuche thrust belt, Tarim Basin[J]. Petroleum Exploration and Development, 2005, 32(3): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200503015.htm
    [31]
    魏国齐, 王俊鹏, 曾联波, 等. 克拉苏构造带盐下超深层储层的构造改造作用与油气勘探新发现[J]. 天然气工业, 2020, 40(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001006.htm

    WEI Guoqi, WANG Junpeng, ZENG Lianbo, et al. Structural reworking effects and new exploration discoveries of subsalt ultra-deep reservoirs in the Kelasu tectonic zone[J]. Natural Gas Industry, 2020, 40(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001006.htm
    [32]
    王俊鹏, 曾联波, 周露, 等. 塔里木盆地克拉苏构造带超深层储层裂缝发育模式及开发意义[J]. 地球科学, 2023, 48(7): 2520-2534. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307007.htm

    WANG Junpeng, ZENG Lianbo, ZHOU Lu, et al. Development model of natural fractures in ultra-deep sandstone reservoirs with low porosity in Kelasu Tectonic Belt, Tarim Basin[J]. Earth Science, 2023, 48(7): 2520-2534. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307007.htm
    [33]
    付晓飞, 宋岩, 吕延防, 等. 塔里木盆地库车坳陷膏盐质盖层特征与天然气保存[J]. 石油实验地质, 2006, 28(1): 25-29. doi: 10.11781/sysydz200601025

    FU Xiaofei, SONG Yan, LÜ Yanfang, et al. Mechanical characteristics of gypsum cover and conservation function to gas in the Kuche depression, the Tarim basin[J]. Petroleum Geology & Experiment, 2006, 28(1): 25-29. doi: 10.11781/sysydz200601025
    [34]
    ZENG Lianbo, SONG Yichen, LIU Guoping, et al. Natural frack-tures in ultra-deep reservoirs of China: a review[J]. Journal of Structural Geology, 2023, 175, 104954.
    [35]
    巩磊, 高铭泽, 曾联波, 等. 影响致密砂岩储层裂缝分布的主控因素分析一以库车前陆盆地侏罗系—新近系为例[J]. 天然气地球科学, 2017, 28(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702003.htm

    GONG Li, GAO Mingze, ZENG Lianbo, et al. Controlling factors on fracture development in the tight sandstone reservoirs: a case study of Jurassic-Neogene in the Kuqa foreland basin[J]. Natural Gas Geoscience, 2017, 28(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702003.htm
    [36]
    ZENG Lianbo, GONG Li, ZHANG Yunzhao, et al. A review of the genesis, evolution, and prediction of natural fractures in deep tight sandstones of China[J]. AAPG Bulletin, 2023, 107(10): 1687-1721.
    [37]
    李军, 张超谟, 肖承文, 等. 库车地区砂岩裂缝测井定量评价方法及应用[J]. 天然气工业, 2008, 28(10): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200810009.htm

    LI Jun, ZHANG Chaomo, XIAO Chengwen, et al. Quantitative evaluation method of fracturing sandstone reservoir and its application in Kuqa area, the Tarim Basin[J]. Natural Gas Industry, 2008, 28(10): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200810009.htm
    [38]
    常宝华, 唐永亮, 朱松柏, 等. 超深层裂缝性致密砂岩气藏试井特征及认识: 以塔里木盆地克深气田为例[J]. 大庆石油地质与开发, 2021, 40(3): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202103021.htm

    CHANG Baohua, TANG Yongliang, ZHU Songbai, et al. Well test characteristics and understandings of the ultra-deep fractured tight sandstone gas reservoirs: a case study on Keshen gas field in Tarim Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(3): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202103021.htm
    [39]
    周鹏, 朱文慧, 王佐涛, 等. 克拉苏构造带超深气藏地层水特征及水化学相图建立[J]. 长江大学学报(自然科学版), 2019, 16(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201902001.htm

    ZHOU Peng, ZHU Wenhui, WANG Zuotao, et al. Characteristics of formation water and water chemical phase diagram of the super-deep gas reservoirs in Kelasu Structure Belt[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201902001.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (181) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return