Volume 46 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
CAI Zhenzhong, ZHANG Hui, XU Ke, YIN Guoqing, WANG Zhimin, WANG Haiying, QIAN Ziwei, ZHANG Yu. Geomechanics modeling of ultra-deep fault-controlled carbonate reservoirs and its application in development[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 868-879. doi: 10.11781/sysydz202404868
Citation: CAI Zhenzhong, ZHANG Hui, XU Ke, YIN Guoqing, WANG Zhimin, WANG Haiying, QIAN Ziwei, ZHANG Yu. Geomechanics modeling of ultra-deep fault-controlled carbonate reservoirs and its application in development[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 868-879. doi: 10.11781/sysydz202404868

Geomechanics modeling of ultra-deep fault-controlled carbonate reservoirs and its application in development

doi: 10.11781/sysydz202404868
  • Received Date: 2023-08-07
  • Rev Recd Date: 2024-05-30
  • Publish Date: 2024-07-28
  • To enhance the development efficiency of ultra-deep fault-controlled carbonate reservoirs, large-scale rock mechanical experiments were conducted to reveal the deformation and connectivity mechanisms of high-angle to near-vertical fault surfaces. Based on the mechanical and flow coupling principles of high-pressure water injection production, geomechanical modeling was employed to clarify the current in-situ stress field and fault activity distribution patterns in fault-controlled carbonate reservoirs. Significant differences were found in fault activities in different directions and in the connectivity of fracture and cavity bodies in different parts. The development effects of different wellbore trajectories were then analyzed, and an integrated geological and engineering working method was proposed to scientifically guide the design of wellbore trajectories and the optimization of water injection schemes. The results show: ① Large-scale fractured bodies and high-angle fracture systems in strike-slip fault deformation are key factors affecting reservoir quality. High-pressure water injection can activate existing fractures on one hand, and on the other hand, it can extend and expand based on existing fractures, even generating new fractures, promoting the interconnection of fault-controlled fracture and cavity bodies in both vertical and horizontal directions; ② During the high-pressure water injection process, coupling changes between mechanics and flow occur inside the fault body, improving the seepage environment, and increasing oil and gas recovery rate through cyclic lifting; ③ According to the shape and the occurrence of the fault body, and the dynamic shear deformation connectivity of the fault surface, the best well point and well trajectory for directional wells can be selected, and the water injection scheme can be optimized; ④ In the fault-controlled oil reservoir test area of Tarim Basin, the recovery rate was increased by 5% through high-pressure water injection. This method provides a good theoretical basis and technical support for the efficient development of ultra-deep fault-controlled reservoirs.

     

  • All authors disclose no relevant conflict of interests.
    The experiment was designed and the manuscript was reviewed by CAI Zhen-zhong and ZHANG Hui. The manuscript was drafted by CAI Zhenzhong, ZHANG Hui, and XU Ke. The experiment results were analyzed by YIN Guoqing and WANG Zhimin. The 3D modelling was made by WANG Haiying. QIAN Ziwei was responsible for drawing the diagrams and proofreading the paper. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    何登发, 贾承造, 赵文智, 等. 中国超深层油气勘探研究进展与关键问题[J]. 石油勘探与开发, 2023, 50(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202306006.htm

    HE Dengfa, JIA Chengzao, ZHAO Wenzhi, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202306006.htm
    [2]
    杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克拉苏盐下深层大气田的发现[J]. 新疆石油地质, 2019, 40(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901003.htm

    YANG Haijun, LI Yong, TANG Yangang, et al. Discovery of Kelasu subsalt deep large gas field, Tarim Basin[J]. Xinjiang Petroleum Geology, 2019, 40(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901003.htm
    [3]
    杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克深气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, (3): 399-414. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202103012.htm

    YANG Haijun, LI Yong, TANG Yangang, et al. Accumulation conditions, key exploration and development technologies for Keshen gas field in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(3): 399-414. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202103012.htm
    [4]
    田军, 杨海军, 朱永峰, 等. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J]. 石油学报, 2021, 42(8): 971-985. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202108001.htm

    TIAN Jun, YANG Haijun, ZHU Yongfeng, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(8): 971-985. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202108001.htm
    [5]
    王清华, 杨海军, 汪如军, 等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探, 2021, 26(4): 58-71. doi: 10.3969/j.issn.1672-7703.2021.04.005

    WANG Qinghua, YANG Haijun, WANG Rujun, et al. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin[J]. China Petroleum Exploration, 2021, 26(4): 58-71. doi: 10.3969/j.issn.1672-7703.2021.04.005
    [6]
    汪如军, 王轩, 邓兴梁, 等. 走滑断裂对碳酸盐岩储层和油气藏的控制作用: 以塔里木盆地北部坳陷为例[J]. 天然气工业, 2021, 41(3): 10-20. doi: 10.3787/j.issn.1000-0976.2021.03.002

    WANG Rujun, WANG Xuan, DENG Xingliang, et al. Control effect of strike-slip faults on carbonate reservoirs and hydrocarbon accumulation: a case study of the northern depression in the Tarim Basin[J]. Natural Gas Industry, 2021, 41(3): 10-20. doi: 10.3787/j.issn.1000-0976.2021.03.002
    [7]
    邓兴梁, 闫婷, 张银涛, 等. 走滑断裂断控碳酸盐岩油气藏的特征与井位部署思路: 以塔里木盆地为例[J]. 天然气工业, 2021, 41(3): 21-29. doi: 10.3787/j.issn.1000-0976.2021.03.003

    DENG Xingliang, YAN Ting, ZHANG Yintao, et al. Characteristics and well location deployment ideas of strike-slip fault controlled carbonate oil and gas reservoirs: a case study of the Tarim Basin[J]. Natural Gas Industry, 2021, 41(3): 21-29. doi: 10.3787/j.issn.1000-0976.2021.03.003
    [8]
    张银涛, 邓兴梁, 邬光辉, 等. 塔里木盆地哈拉哈塘地区走滑断裂带油气分布与油藏模式[J]. 地质科学, 2020, 55(2): 382-391. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202002006.htm

    ZHANG Yintao, DENG Xingliang, WU Guanghui, et al. The oil distribution and accumulation model along the strike-slip fault zones in Halahatang area, Tarim Basin[J]. Chinese Journal of Geology, 2020, 55(2): 382-391. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202002006.htm
    [9]
    张三, 金强, 胡明毅, 等. 塔河地区奥陶系不同地貌岩溶带结构组合差异与油气富集[J]. 石油勘探与开发, 2021, 48(5): 962-973. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105009.htm

    ZHANG San, JIN Qiang, HU Mingyi, et al. Differential structure of Ordovician karst zone and hydrocarbon enrichment in paleogeomorphic units in Tahe area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(5): 962-973. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105009.htm
    [10]
    杨海军, 李世银, 邓兴梁, 等. 深层缝洞型碳酸盐岩凝析气藏勘探开发关键技术: 以塔里木盆地塔中Ⅰ号气田为例[J]. 天然气工业, 2020, 40(2): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202002012.htm

    YANG Haijun, LI Shiyin, DENG Xingliang, et al. Key technologies for the exploration and development of deep fractured-vuggy carbonate condensate gas reservoirs: a case study of the Tazhong Ⅰ Gas Field in the Tarim Basin[J]. Natural Gas Industry, 2020, 40(2): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202002012.htm
    [11]
    江同文, 昌伦杰, 邓兴梁, 等. 断控碳酸盐岩油气藏开发地质认识与评价技术: 以塔里木盆地为例[J]. 天然气工业, 2021, 41(3): 1-9. doi: 10.3787/j.issn.1000-0976.2021.03.001

    JIANG Tongwen, CHANG Lunjie, DENG Xingliang, et al. Geological understanding and evaluation technology of fault controlled carbonate reservoir development: a case study of the Tarim Basin[J]. Natural Gas Industry, 2021, 41(3): 1-9. doi: 10.3787/j.issn.1000-0976.2021.03.001
    [12]
    田建华, 朱博华, 卢志强, 等. 基于井控多属性机器学习的缝洞型储层预测方法[J]. 油气地质与采收率, 2023, 30(1): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202301008.htm

    TIAN Jianhua, ZHU Bohua, LU Zhiqiang, et al. Fracture-cavity reservoir prediction based on well-controlled multi-attribute machine learning[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202301008.htm
    [13]
    韩剑发, 王彭, 朱光有, 等. 塔里木盆地超深层千吨井油气地质与高效区分布规律[J]. 天然气地球科学, 2023, 34(5): 735-748. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202305001.htm

    HAN Jianfa, WANG Peng, ZHU Guangyou, et al. Petroleum geology and distribution law of high efficiency areas in ultra-deep kiloton wells in Tarim Basin[J]. Natural Gas Geoscience, 2023, 34(5): 735-748. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202305001.htm
    [14]
    徐珂, 田军, 杨海军, 等. 塔里木盆地库车坳陷超深层现今地应力对储层品质的影响及实践应用[J]. 天然气地球科学, 2022, 33(1): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202201002.htm

    XU Ke, TIAN Jun, YANG Haijun, et al. Effects and practical applications of present-day in-situ stress on reservoir quality in ultra-deep layers of Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(1): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202201002.htm
    [15]
    贾承造, 马德波, 袁敬一, 等. 塔里木盆地走滑断裂构造特征、形成演化与成因机制[J]. 天然气工业, 2021, 41(8): 81-91. doi: 10.3787/j.issn.1000-0976.2021.08.008

    JIA Chengzao, MA Debo, YUAN Jingyi, et al. Structural characteristics, formation & evolution and genetic mechanisms of strike-slip faults in the Tarim Basin[J]. Natural Gas Industry, 2021, 41(8): 81-91. doi: 10.3787/j.issn.1000-0976.2021.08.008
    [16]
    韩剑发, 苏洲, 陈利新, 等. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J]. 石油学报, 2019, (11): 1296-1310. doi: 10.7623/syxb201911002

    HAN Jianfa, SU Zhou, CHEN Lixin, et al. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(11): 1296-1310. doi: 10.7623/syxb201911002
    [17]
    云露. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探, 2021, 26(3): 41-52. doi: 10.3969/j.issn.1672-7703.2021.03.004

    YUN Lu. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance, Tarim Basin[J]. China Petroleum Exploration, 2021, 26(3): 41-52. doi: 10.3969/j.issn.1672-7703.2021.03.004
    [18]
    XU Ke, YANG Haijun, ZHANG Hui, et al. Fracture effectiveness evaluation in ultra-deep reservoirs based on geomechanical method, Kuqa Depression, Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2022, 215: 110604. doi: 10.1016/j.petrol.2022.110604
    [19]
    江同文, 张辉, 徐珂, 等. 超深层裂缝型储层最佳井眼轨迹量化优选技术与实践: 以克拉苏构造带博孜A气藏为例[J]. 中国石油勘探, 2021, 26(4): 149-161. doi: 10.3969/j.issn.1672-7703.2021.04.012

    JIANG Tongwen, ZHANG Hui, XU Ke, et al. Technology and practice of quantitative optimization of borehole trajectory in ultra-deep fractured reservoir: a case study of Bozi A gas reservoir in Kelasu structural belt, Tarim Basin[J]. China Petroleum Exploration, 2021, 26(4): 149-161. doi: 10.3969/j.issn.1672-7703.2021.04.012
    [20]
    MAERTEN L, MAERTEN F. Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration: technique and industry applications[J]. AAPG Bulletin, 2006, 90(8): 1201-1226. doi: 10.1306/02240605116
    [21]
    李勇, 徐珂, 张辉, 等. 塔里木盆地超深层油气钻探工程的特殊地质因素[J]. 中国石油勘探, 2022, 27(3): 88-98. doi: 10.3969/j.issn.1672-7703.2022.03.008

    LI Yong, XU Ke, ZHANG Hui, et al. Special geological factors in drilling engineering of ultra-deep oil and gas reservoir in Tarim Baisn[J]. China Petroleum Exploration, 2022, 27(3): 88-98. doi: 10.3969/j.issn.1672-7703.2022.03.008
    [22]
    王翠丽, 周文, 李红波, 等. 镇泾地区延长组多期次裂缝发育特征及分布[J]. 成都理工大学学报(自然科学版), 2014, 41(5): 596-603. doi: 10.3969/j.issn.1671-9727.2014.05.09

    WANG Cuili, ZHOU Wen, LI Hongbo, et al. Characteristics and distribution of multiphase fractures in Yanchang Formation of Zhenjing block in Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(5): 596-603. doi: 10.3969/j.issn.1671-9727.2014.05.09
    [23]
    李映涛, 汝智星, 邓尚, 等. 塔里木盆地顺北特深碳酸盐岩储层天然裂缝实验评价及油气意义[J]. 石油实验地质, 2023, 45(3): 422-433. doi: 10.11781/sysydz202303422

    LI Yingtao, RU Zhixing, DENG Shang, et al. Experimental evaluation and hydrocarbon significance of natural fractures in Shunbei ultra-deep carbonate reservoir, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 422-433. doi: 10.11781/sysydz202303422
    [24]
    施尚明, 王杰, 段彦清. 基于RGB多地震属性融合的储层预测[J]. 黑龙江科技大学学报, 2016, 26(5): 502-505. doi: 10.3969/j.issn.2095-7262.2016.05.007

    SHI Shangming, WANG Jie, DUAN Yanqing. Reservoir prediction based on RGB multiple seismic attributes fusion[J]. Journal of Heilongjiang University of Science and Technology, 2016, 26(5): 502-505. doi: 10.3969/j.issn.2095-7262.2016.05.007
    [25]
    焦方正. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识[J]. 石油勘探与开发, 2019, 46(3): 552-558. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903014.htm

    JIAO Fangzheng. Practice and knowledge of volumetric development of deep fractured-vuggy carbonate reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 552-558. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903014.htm
    [26]
    FISHER Q J, KNIPE R J. The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian continental shelf[J]. Marine & Petroleum Geology, 2001, 18(10): 1063-1081.
    [27]
    ZOBACK M D, KOHLI A, DAS I, et al. The importance of slow slip on faults during hydraulic fracturing stimulation of shale gas reservoirs[C]//SPE Americas Unconventional Resources Conference. Pittsburg, Pennsylvania, USA: SPE, 2012.
    [28]
    姚军, 黄朝琴, 刘文政, 等. 深层油气藏开发中的关键力学问题[J]. 中国科学: 物理学, 力学, 天文学, 2018, 48(4): 044701. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201804001.htm

    YAO Jun, HUANG Zhaoqin, LIU Wenzheng, et al. Key mechanical problems in the development of deep oil and gas reservoirs[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(4): 044701. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201804001.htm
    [29]
    曾联波, 漆家福, 王成刚, 等. 构造应力对裂缝形成与流体流动的影响[J]. 地学前缘, 2008, 15(3): 292-298. doi: 10.3321/j.issn:1005-2321.2008.03.026

    ZENG Lianbo, QI Jiafu, WANG Chenggang, et al. The influence of tectonic stress on fracture formation and fluid flow[J]. Earth Science Frontiers, 2008, 15(3): 292-298. doi: 10.3321/j.issn:1005-2321.2008.03.026
    [30]
    邓铭哲, 蔡芃睿, 陆建林, 等. 走滑断裂演化程度的表征参数研究[J]. 石油实验地质, 2023, 45(5): 1007-1015. doi: 10.11781/sysydz2023051007

    DENG Mingzhe, CAI Pengrui, LU Jianlin, et al. Characterization parameters of the evolution degree of strike-slip faults[J]. Petroleum Geology & Experiment, 2023, 45(5): 1007-1015. doi: 10.11781/sysydz2023051007
    [31]
    刘文超, 姚军, 同登科, 等. 变形三重介质低渗透油藏垂直裂缝井的非线性流动分析[J]. 力学季刊, 2011, 32(4): 507-514. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201104005.htm

    LIU Wenchao, YAO Jun, TONG Dengke, et al. The non-linear flow analysis of finite conductivity vertically fractured wells in the low permeability reservoir with deformed triple porosity medium[J]. Chinese Quarterly of Mechanics, 2011, 32(4): 507-514. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201104005.htm
    [32]
    徐珂, 杨海军, 张辉, 等. 塔里木盆地克拉苏构造带超深层致密砂岩气藏一体化增产关键技术与实践[J]. 中国石油勘探, 2022, 27(5): 106-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202205009.htm

    XU Ke, YANG Haijun, ZHANG Hui, et al. Key technology and practice of the integrated well stimulation of ultra-deep tight sandstone gas reservoir in Kelasu structural belt, Tarim Basin[J]. China Petroleum Exploration, 2022, 27(5): 106-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202205009.htm
    [33]
    魏操, 程时清, 李宗泽, 等. 井洞相连的串珠状缝洞型油藏试井分析方法[J]. 油气地质与采收率, 2022, 29(6): 85-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202206010.htm

    WEI Cao, CHENG Shiqing, LI Zongze, et al. Well test analysis method for fracture-cavity reservoirs of beads-on-string structure with wellbore-cave connection[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6): 85-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202206010.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (78) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return