Volume 46 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
JU Wei, ZHANG Hui, XU Ke, NING Weike, XIANG Ru. Quantitative division method of geomechanical strata and its applications in exploration and development of oil and gas in ultra-deep layers[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 880-888. doi: 10.11781/sysydz202404880
Citation: JU Wei, ZHANG Hui, XU Ke, NING Weike, XIANG Ru. Quantitative division method of geomechanical strata and its applications in exploration and development of oil and gas in ultra-deep layers[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 880-888. doi: 10.11781/sysydz202404880

Quantitative division method of geomechanical strata and its applications in exploration and development of oil and gas in ultra-deep layers

doi: 10.11781/sysydz202404880
  • Received Date: 2023-12-06
  • Rev Recd Date: 2024-05-27
  • Publish Date: 2024-07-28
  • Efficient exploration and development of ultra-deep oil and gas reservoirs are key objectives in current global energy geological research. The concept of "geomechanical strata and oil and gas exploration and development" represents a cutting-edge research area internationally. Establishing an effective method for dividing geomechanical layers holds both theoretical and practical significance for the efficient exploration and economical development of ultra-deep oil and gas reservoirs. Currently, the state of in-situ stress affects the effectiveness of natural fractures, while the development and distribution of fractures impact the mechanical properties of rocks, which influence the the distribution of in-situ stress. However, the existing "rock mechanical stratigraphy theory" fails to comprehensively cover the coupling relationships among these three factors. In response, this study introduced a method for the quantitative division of geomechanical strata based on six parameters: minimum horizontal principal stress, difference in horizontal stress, elastic modulus, angle between the current dominant stress orientation and the natural fracture orientation, natural fracture density, and stress concentration factor. An analysis of well W in the Dabei area of the Kelasu structural belt, Kuqa Depression, Tarim Basin, demonstrated that the target layers at the Cretaceous Bashijiqike Formation exhibited strong vertical geomechanical heterogeneity. The geomechanical strata of the reservoir correlated well with the development sections of the gas layers. Therefore, with the results of geomechanical strata division, it is possible to guide the optimization of sweet spots in ultra-deep oil and gas reservoirs.

     

  • All authors disclose no relevant conflict of interests.
    JU Wei wrote and revised the manuscript. ZHANG Hui and XU Ke divided geomechanical strata. NING Weike drew the figures. XIANG Ru wrote the division code for geomechanical strata. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 36(12): 1457-1469. doi: 10.7623/syxb201512001

    JIA Chengzao, PANG Xiongqi. Research processes and main deve-lopment directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1457-1469. doi: 10.7623/syxb201512001
    [2]
    关晓东, 郭磊. 深层-超深层油气成藏研究新进展及展望[J]. 石油实验地质, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203

    GUAN Xiaodong, GUO Lei. New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata[J]. Petroleum Geology & Experiment, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203
    [3]
    胡文瑞, 鲍敬伟, 胡滨. 全球油气勘探进展与趋势[J]. 石油勘探与开发, 2013, 40(4): 409-413. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304002.htm

    HU Wenrui, BAO Jingwei, HU Bin. Trend and progress in global oil and gas exploration[J]. Petroleum Exploration and Development, 2013, 40(4): 409-413. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304002.htm
    [4]
    ZOU Caineng, HOU Lianhua, HU Suyun, et al. Prospect of ultra-deep petroleum onshore China[J]. Energy Exploration & Exploitation, 2014, 32(1): 19-40.
    [5]
    支东明, 李建忠, 陈旋, 等. 吐哈探区深层油气勘探进展及潜力评价[J]. 新疆石油地质, 2023, 44(3): 253-264. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202303001.htm

    ZHI Dongming, LI Jianzhong, CHEN Xuan, et al. Exploration progress and potential evaluation of deep oil and gas in Turpan-Hami exploration area[J]. Xinjiang Petroleum Geology, 2023, 44(3): 253-264. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202303001.htm
    [6]
    葛勋, 郭彤楼, 黎茂稳, 等. 深层页岩储层"工程甜点"评价与优选: 以川南永川、丁山地区为例[J]. 石油实验地质, 2023, 45(2): 210-221. doi: 10.11781/sysydz202302210

    GE Xun, GUO Tonglou, LI Maowen, et al. Evaluation and optimization of "engineering sweet spot" in deep shale reservoir: case study on Yongchuan and Dingshan areas in southern Sichuan[J]. Petroleum Geology & Experiment, 2023, 45(2): 210-221. doi: 10.11781/sysydz202302210
    [7]
    冯佳睿, 高志勇, 崔京钢, 等. 深层、超深层碎屑岩储层勘探现状与研究进展[J]. 地球科学进展, 2016, 31(7): 718-736. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201607009.htm

    FENG Jiarui, GAO Zhiyong, CUI Jinggang, et al. The exploration status and research advances of deep and ultra-deep clastic reservoirs[J]. Advances in Earth Science, 2016, 31(7): 718-736. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201607009.htm
    [8]
    李剑, 佘源琦, 高阳, 等. 中国陆上深层-超深层天然气勘探领域及潜力[J]. 中国石油勘探, 2019, 24(4): 403-417. doi: 10.3969/j.issn.1672-7703.2019.04.001

    LI Jian, SHE Yuanqi, GAO Yang, et al. Onshore deep and ultra-deep natural gas exploration fields and potentials in China[J]. China Petroleum Exploration, 2019, 24(4): 403-417. doi: 10.3969/j.issn.1672-7703.2019.04.001
    [9]
    魏国齐, 王俊鹏, 曾联波, 等. 克拉苏构造带盐下超深层储层的构造改造作用与油气勘探新发现[J]. 天然气工业, 2020, 40(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001006.htm

    WEI Guoqi, WANG Junpeng, ZENG Lianbo, et al. Structural reworking effects and new exploration discoveries of subsalt ultra-deep reservoirs in the Kelasu tectonic zone[J]. Natural Gas Industry, 2020, 40(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001006.htm
    [10]
    曾庆鲁, 莫涛, 赵继龙, 等. 7000 m以深优质砂岩储层的特征、成因机制及油气勘探意义: 以库车坳陷下白垩统巴什基奇克组为例[J]. 天然气工业, 2020, 40(1): 38-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001009.htm

    ZENG Qinglu, MO Tao, ZHAO Jilong, et al. Characteristics, genetic mechanism and oil & gas exploration significance of high-quality sandstone reservoirs deeper than 7000 m: a case study of the Bashijiqike Formation of Lower Cretaceous in the Kuqa Depression[J]. Natural Gas Industry, 2020, 40(1): 38-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001009.htm
    [11]
    田军, 杨海军, 吴超, 等. 博孜9井的发现与塔里木盆地超深层天然气勘探潜力[J]. 天然气工业, 2020, 40(1): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001004.htm

    TIAN Jun, YANG Haijun, WU Chao, et al. Discovery of well Bozi 9 and ultra-deep natural gas exploration potential in the Kelasu tectonic zone of the Tarim Basin[J]. Natural Gas Industry, 2020, 40(1): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001004.htm
    [12]
    张辉, 鞠玮, 徐珂, 等. 库车坳陷博孜气藏超深致密砂岩储集层现今地应力预测[J]. 新疆石油地质, 2023, 44(2): 224-230. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202302012.htm

    ZHANG Hui, JU Wei, XU Ke, et al. Prediction of present-day in-situ stress in ultra-deep tight sandstone reservoirs in Bozi gas reservoir, Kuqa Depression[J]. Xinjiang Petroleum Geology, 2023, 44(2): 224-230. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202302012.htm
    [13]
    吕志凯, 张建业, 张永宾, 等. 超深层裂缝性致密砂岩气藏储层连通性及开发启示: 以塔里木盆地库车坳陷克深2气藏为例[J]. 断块油气田, 2023, 30(1): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202301005.htm

    LÜ Zhikai, ZHANG Jianye, ZHANG Yongbin, et al. Reservoir connectivity of ultra-deep fractured tight sandstone gas reservoir and development enlightenment: taking Keshen 2 gas reservoir in Kuqa Depression of Tarim Basin as an example[J]. Fault-Block Oil and Gas Field, 2023, 30(1): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202301005.htm
    [14]
    徐珂, 杨海军, 张辉, 等. 塔里木盆地克拉苏构造带超深层致密砂岩气藏一体化增产关键技术与实践[J]. 中国石油勘探, 2022, 27(5): 106-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202205009.htm

    XU Ke, YANG Haijun, ZHANG Hui, et al. Key technology and practice of the integrated well stimulation of ultra-deep tight sandstone gas reservoir in Kelasu structural belt, Tarim Basin[J]. China Petroleum Exploration, 2022, 27(5): 106-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202205009.htm
    [15]
    郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜-大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202304010.htm

    GUO Honghui, FENG Jianwei, ZHAO Libin. Characteristics of passive strike-slip structure and its control effect on fracture development in Bozi-Dabei area, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(4): 962-975. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202304010.htm
    [16]
    徐珂, 杨海军, 张辉, 等. 基于地质力学方法的深层致密气藏高效勘探技术: 以库车坳陷迪北气藏为例[J]. 地球科学, 2023, 48(2): 621-639. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202302018.htm

    XU Ke, YANG Haijun, ZHANG Hui, et al. Efficient exploration technology of deep tight gas reservoir based on geomechanics method: a case study of Dibei gas reservoir in Kuqa Depression[J]. Earth Science, 2023, 48(2): 621-639. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202302018.htm
    [17]
    鞠玮, 侯贵廷, 黄少英, 等. 库车坳陷依南-吐孜地区下侏罗统阿合组砂岩构造裂缝分布预测[J]. 大地构造与成矿学, 2013, 37(4): 592-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304005.htm

    JU Wei, HOU Guiting, HUANG Shaoying, et al. Structural fracture distribution and prediction of the Lower Jurassic Ahe Formation sandstone in the Yinan-Tuzi area, Kuqa Depression[J]. Geotectonica et Metallogenia, 2013, 37(4): 592-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304005.htm
    [18]
    张辉, 尹国庆, 王海应. 塔里木盆地库车坳陷天然裂缝地质力学响应对气井产能的影响[J]. 天然气地球科学, 2019, 30(3): 379-388. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201903010.htm

    ZHANG Hui, YIN Guoqing, WANG Haiying. Effects of natural fractures geomechanical response on gas well productivity in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2019, 30(3): 379-388. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201903010.htm
    [19]
    李皋, 张毅, 杨旭. 油气勘探开发中的工程地质力学问题及研究方法[J]. 西南石油大学学报(自然科学版), 2023, 45(3): 72-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202303016.htm

    LI Gao, ZHANG Yi, YANG Xu. Engineering geological mechanics issues and research methods in oil and gas exploration and development[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(3): 72-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202303016.htm
    [20]
    熊健, 吴俊, 刘向君, 等. 陆相页岩储层地质力学特性及对压裂效果的影响[J]. 西南石油大学学报(自然科学版), 2023, 45(5): 69-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202305004.htm

    XIONG Jian, WU Jun, LIU Xiangjun, et al. The geomechanical characteristics of the continental shale reservoirs and their influence on the fracturing effect[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(5): 69-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202305004.htm
    [21]
    张培先, 高全芳, 何希鹏, 等. 南川地区龙马溪组页岩气地应力场特征及对产量影响分析[J]. 油气地质与采收率, 2023, 30(4): 55-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202304004.htm

    ZHANG Peixian, GAO Quanfang, HE Xipeng, et al. Characteristics of in-situ stress field and its influence on shale gas production from Longmaxi Formation in Nanchuan area[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(4): 55-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202304004.htm
    [22]
    LAUBACH S E, OLSON J E, GROSS M R. Mechanical and fracture stratigraphy[J]. AAPG Bulletin, 2009, 93(11): 1413-1426.
    [23]
    巩磊, 姚嘉琪, 高帅, 等. 岩石力学层对构造裂缝间距的控制作用[J]. 大地构造与成矿学, 2018, 42(6): 965-973. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201806002.htm

    GONG Lei, YAO Jiaqi, GAO Shuai, et al. Controls of rock mecha-nical stratigraphy on tectonic fracture spacing[J]. Geotectonica et Metallogenia, 2018, 42(6): 965-973. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201806002.htm
    [24]
    赵乐强, 冯建伟. 岩石力学层与构造裂缝发育关系研究[J]. 山东科技大学学报(自然科学版), 2018, 37(1): 35-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201801004.htm

    ZHAO Leqiang, FENG Jianwei. Interrelationship study between rock mechanical stratigraphy and structural fracture development[J]. Journal of Shandong University of Science and Technology (Natural Science), 2018, 37(1): 35-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201801004.htm
    [25]
    GROSS M R, GUTIE'RREZ-ALONSO G, BAI T X, et al. Influence of mechanical stratigraphy and kinematics on fault scaling relations[J]. Journal of Structural Geology, 1997, 19(2): 171-183.
    [26]
    桑树勋, 周效志, 刘世奇, 等. 岩石力学地层理论方法及其煤系气高效勘探开发应用基础述评[J]. 地质学报, 2022, 96(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201021.htm

    SANG Shuxun, ZHOU Xiaozhi, LIU Shiqi, et al. A review of mecha-nical stratigraphy methodology and its application in high-efficient exploration and development of coal measure gas[J]. Acta Geologica Sinica, 2022, 96(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201021.htm
    [27]
    刘敬寿, 丁文龙, 杨海盟, 等. 鄂尔多斯盆地华庆地区天然裂缝与岩石力学层演化: 基于数值模拟的定量分析[J]. 地球科学, 2023, 48(7): 2572-2588. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307010.htm

    LIU Jingshou, DING Wenlong, YANG Haimeng, et al. Natural fractures and rock mechanical stratigraphy evaluation in Huaqing area, Ordos Basin: a quantitative analysis based on numerical simulation[J]. Earth Science, 2023, 48(7): 2572-2588. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307010.htm
    [28]
    DI NACCIO D, BONCIO P, CIRILLI S, et al. Role of mechanical stratigraphy on fracture development in carbonate reservoirs: insights from outcropping shallow water carbonates in the Umbria-Marche Apennines, Italy[J]. Journal of Volcanology and Geothermal Research, 2005, 148(1/2): 98-115.
    [29]
    BARBIER M, LEPRÊTRE R, CALLOT J P, et al. Impact of fracture stratigraphy on the paleo-hydrogeology of the Madison Limestone in two basement-involved folds in the Bighorn Basin, (Wyoming, USA)[J]. Tectonophysics, 2012, 576-577: 116-132.
    [30]
    徐珂, 张辉, 刘新宇, 等. 库车坳陷深层裂缝性储层现今地应力特征及其对天然气勘探开发的指导意义[J]. 油气地质与采收率, 2022, 29(2): 34-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202202004.htm

    XU Ke, ZHANG Hui, LIU Xinyu, et al. Current in-situ stress characteristics of deep fractured reservoirs in Kuqa Depression and its guiding significance to natural gas exploration and deve-lopment[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2): 34-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202202004.htm
    [31]
    蔡振忠, 徐珂, 张辉, 等. 基于地质工程一体化的超深井提速提产: 以塔里木盆地库车坳陷为例[J]. 新疆石油地质, 2022, 43(2): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202202012.htm

    CAI Zhenzhong, XU Ke, ZHANG Hui, et al. ROP improvement and production enhancement for ultra-deep wells based on geology-engineering integration: a case in Kuqa Depression, Tarim Basin[J]. Xinjiang Petroleum Geology, 2022, 43(2): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202202012.htm
    [32]
    ZOBACK M D. Reservoir geomechanics[M]. Cambridge: Cambridge University Press, 2007: 449.
    [33]
    FJÆR E, HOLT R M, HORSRUD P, et al. Petroleum related rock mechanics[M]. 2nd ed. Amsterdam: Elsevier, 2008: 491.
    [34]
    李志明, 张金珠. 地应力与油气勘探开发[M]. 北京: 石油工业出版社, 1997: 402.

    LI Zhiming, ZHANG Jinzhu. In-situ stress and petroleum exploration & development[M]. Beijing: Petroleum Industry Press, 1997: 402.
    [35]
    鞠玮, 牛小兵, 侯贵廷, 等. 鄂尔多斯盆地现今地应力场与致密油勘探开发[M]. 徐州: 中国矿业大学出版社, 2021: 150.

    JU Wei, NIU Xiaobing, HOU Guiting, et al. The present-day in-situ stress field and tight oil exploration & development in the Ordos Basin[M]. Xuzhou: China University of Mining and Technology Press, 2021: 150.
    [36]
    EATON B A. Graphical method predicts geopressures worldwide[J]. World Oil, 1972, 182(6): 51-56.
    [37]
    鞠玮, 牛小兵, 冯胜斌, 等. 页岩油储层现今地应力场与裂缝有效性评价: 以鄂尔多斯盆地延长组长7油层组为例[J]. 中国矿业大学学报, 2020, 49(5): 931-940. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202005013.htm

    JU Wei, NIU Xiaobing, FENG Shengbin, et al. The present-day in-situ stress state and fracture effectiveness evaluation in shale oil reservoir: a case study of the Yanchang Formation Chang 7 oil-bearing layer in the Ordos Basin[J]. Journal of China University of Mining & Technology, 2020, 49(5): 931-940. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202005013.htm
    [38]
    Hillis R R, Enever J R, Reynolds S D. In situ stress field of Australia[J]. Australian Journal of Earth Sciences, 1999, 46(5): 813-825.
    [39]
    张卫强. 岩石热损伤微观机制与宏观物理力学性质演变特征研究: 以典型岩石为例[D]. 徐州: 中国矿业大学, 2017: 188.

    ZHANG Weiqiang. Study on the microscopic mechanism of rock thermal damage and the evolution characteristics of macroscopic physical and mechanical properties: taking typical rock as an example[D]. Xuzhou: China University of Mining and Technology, 2017: 188.
    [40]
    BARTON N R. A model study of rock-joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1972, 9(5): 579-582.
    [41]
    KONG Xiangwen, JU Wei, HUANG Wensong, et al. Present-day in-situ stress prediction in the duvernay shale of simonette block, western Canada sedimentary Basin[J]. Petroleum Science and Technology, 2023. doi: 10.1080/10916466.2023.2252008.
    [42]
    徐珂, 田军, 杨海军, 等. 塔里木盆地库车坳陷超深层现今地应力对储层品质的影响及实践应用[J]. 天然气地球科学, 2022, 33(1): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202201002.htm

    XU Ke, TIAN Jun, YANG Haijun, et al. Effects and practical applications of present-day in-situ stress on reservoir quality in ultra-deep layers of Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(1): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202201002.htm
    [43]
    王招明. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J]. 天然气地球科学, 2014, 25(2): 153-166. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201402003.htm

    WANG Zhaoming. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2014, 25(2): 153-166. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201402003.htm
    [44]
    王珂, 张荣虎, 王俊鹏, 等. 超深层致密砂岩储层构造裂缝分布特征及其成因: 以塔里木盆地库车前陆冲断带克深气田为例[J]. 石油与天然气地质, 2021, 42(2): 338-353. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202102008.htm

    WANG Ke, ZHANG Ronghu, WANG Junpeng, et al. Distribution and origin of tectonic fractures in ultra-deep tight sandstone reservoirs: a case study of Keshen gas field, Kuqa foreland thrust belt, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(2): 338-353. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202102008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (363) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return