Volume 46 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
NIU Siqi, LIU Guangdi, WANG Yunlong, SONG Zezhang, ZHU Lianqiang, ZHAO Wenzhi, TIAN Xingwang, YANG Dailin, LI Yishu. Occurrence characteristics and genesis mechanism of pyrobitumen in Sinian Dengying to Cambrian Longwangmiao reservoirs in central Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 1039-1049. doi: 10.11781/sysydz2024051039
Citation: NIU Siqi, LIU Guangdi, WANG Yunlong, SONG Zezhang, ZHU Lianqiang, ZHAO Wenzhi, TIAN Xingwang, YANG Dailin, LI Yishu. Occurrence characteristics and genesis mechanism of pyrobitumen in Sinian Dengying to Cambrian Longwangmiao reservoirs in central Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 1039-1049. doi: 10.11781/sysydz2024051039

Occurrence characteristics and genesis mechanism of pyrobitumen in Sinian Dengying to Cambrian Longwangmiao reservoirs in central Sichuan Basin

doi: 10.11781/sysydz2024051039
  • Received Date: 2023-08-07
  • Rev Recd Date: 2024-08-22
  • Publish Date: 2024-09-28
  • Reservoirs in the Sinian Dengying (DY) to Lower Cambrian Longwangmiao (LWM) formations in the central Sichuan Basin exhibit evident hydrothermal activities with pyrobitumen showing signs of alterations caused by hydrothermal fluids. However, few studies have explored the relationship between hydrothermal fluid activity and the evolution of natural gas accumulation, resulting in a significant lack of understanding of oil and gas accumulation history in the DY Formation. The impact of hydrothermal fluids on oil and gas accumulation in the DY Formation is substantial, and a correct understanding of the natural gas accumulation process and the identification of favorable exploration areas in the DY Formation require further research into hydrothermal cracking gas accumulation. By examining the filling features, optical textures, and structural characteristics of pyrobitumen and conducting geochemical studies on fluid inclusions trapped by hydrothermal minerals, this study explored the genesis of pyrobitumen in the DY to LWM formations. The relationship between hydrothermal fluid activity and oil cracking was also analyzed. The the pyrobitumen in the DY to LWM formations in the central Sichuan Basin were formed during hydrothermal fluid activity, exhibiting the same optical anisotropy characteristics as the mesophase pyrobitumen. Pyrobitumen can be divided into four types: fine-grained mosaic, medium-grained mosaic, coarse-grained mosaic, and streamline types. Its formation temperature exceeded 300 ℃, far surpassing the maximum burial temperature of the strata, indicating its hydrothermal fluid-driven genesis. The hydrothermal fluid activity occurred during the Late Permian and was related to the Emeishan mantle plume. The temperature of the hydrothermal fluids exceeded 300 ℃, leading to crude oil cracking in reservoirs of the DY to LWM formations. This study found that hydrothermal fluid activity advanced the cracking time of crude oil in the paleo reservoirs of the DY to LWM formations to the Late Permian, disrupting the existing accumulation model and helping us re-understand the evolution process of gas reservoirs and identify favorable accumulation areas.

     

  • Author SONG Zezhang is a Young Editorial Board Member of this journal, and he did not take part in peer review or decision making of this article.
    The manuscript was drafted and revised by NIU Siqi. The project was managed by LIU Guangdi. The project operation and document are under the responsibility of WANG Yunlong. SONG Zezhang participated in data processing and initial draft revision. The experiment was designed and completed by ZHU Lianqiang and LI Yishu. The project was supervised by ZHAO Wenzhi. The project materials were provided by TIAN Xingwang and YANG Dailin. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    魏国齐, 杜金虎, 徐春春, 等. 四川盆地高石梯—磨溪地区震旦系—寒武系大型气藏特征与聚集模式[J]. 石油学报, 2015, 36(1): 1-12.

    WEI Guoqi, DU Jinhu, XU Chunchun, et al. Characteristics and accumulation modes of large gas reservoirs in Sinian-Cambrian of Gaoshiti-Moxi region, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(1): 1-12.
    [2]
    徐春春, 沈平, 杨跃明, 等. 乐山—龙女寺古隆起震旦系—下寒武统龙王庙组天然气成藏条件与富集规律[J]. 天然气工业, 2014, 34(3): 1-7.

    XU Chunchun, SHEN Ping, YANG Yueming, et al. Accumulation conditions and enrichment patterns of natural gas in the Lower Cambrian Longwangmiao Fm reservoirs of the Leshan-Longnüsi paleohigh, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 1-7.
    [3]
    林潼, 谭聪, 王铜山, 等. 川中地区龙王庙组油气差异聚集演化特征及其对气藏形成的影响[J]. 石油实验地质, 2022, 44(4): 655-665. doi: 10.11781/sysydz202204655

    LIN Tong, TAN Cong, WANG Tongshan, et al. Differential hydrocarbon accumulation and its influence on the formation of gas reservoirs in the Longwangmiao Formation, central Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 655-665. doi: 10.11781/sysydz202204655
    [4]
    文龙, 张建勇, 潘立银, 等. 川中蓬莱—中江地区灯二段微生物白云岩储层特征、发育主控因素与勘探领域[J]. 石油实验地质, 2023, 45(5): 982-993. doi: 10.11781/sysydz202305982

    WEN Long, ZHANG Jianyong, PAN Liyin, et al. Characteristics, controlling factors and exploration prospects of microbial dolomite reservoirs in the second member of Dengying Formation, Penglai-Zhongjiang area of central Sichuan Basin[J]. Petroleum Geology & Experiment, 2023, 45(5): 982-993. doi: 10.11781/sysydz202305982
    [5]
    ZHU Lianqiang, LIU Guangdi, SONG Zezhang, et al. Reservoir solid bitumen-source rock correlation using the trace and rare earth elements: implications for identifying the natural gas source of the Ediacaran-Lower Cambrian reservoirs, central Sichuan Basin[J]. Marine and Petroleum Geology, 2021, 37: 105499.
    [6]
    魏国齐, 谢增业, 宋家荣, 等. 四川盆地川中古隆起震旦系—寒武系天然气特征及成因[J]. 石油勘探与开发, 2015, 42(6): 702-711.

    WEI Guoqi, XIE Zengye, SONG Jiarong, et al. Features and origin of natural gas in the Sinian-Cambrian of central Sichuan paleo-uplift, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(6): 702-711.
    [7]
    郑平, 施雨华, 邹春艳, 等. 高石梯—磨溪地区灯影组、龙王庙组天然气气源分析[J]. 天然气工业, 2014, 34(3): 50-54.

    ZHENG Ping, SHI Yuhua, ZOU Chunyan, et al. Natural gas sources in the Dengying and Longwangmiao Fms in the Gaoshiti-Maoxi area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 50-54.
    [8]
    赵文智, 谢增业, 王晓梅, 等. 四川盆地震旦系气源特征与原生含气系统有效性[J]. 石油勘探与开发, 2021, 48(6): 1089-1099.

    ZHAO Wenzhi, XIE Zengye, WANG Xiaomei, et al. Sinian gas sources and effectiveness of primary gas-bearing system in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1089-1099.
    [9]
    沈安江, 赵文智, 胡安平, 等. 碳酸盐矿物定年和定温技术及其在川中古隆起油气成藏研究中的应用[J]. 石油勘探与开发, 2021, 48(3): 476-487.

    SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. The dating and temperature measurement technologies for carbonate minerals and their application in hydrocarbon accumulation research in the paleo-uplift in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(3): 476-487.
    [10]
    王国芝, 刘树根, 刘伟, 等. 川中高石梯构造灯影组油气成藏过程[J]. 成都理工大学学报(自然科学版), 2014, 41(6): 684-693.

    WANG Guozhi, LIU Shugen, LIU Wei, et al. Process of hydrocarbon accumulation of Sinian Dengying Formation in Gaoshiti structure, central Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6): 684-693.
    [11]
    刘树根, 马永生, 蔡勋育, 等. 四川盆地震旦系—下古生界天然气成藏过程和特征[J]. 成都理工大学学报(自然科学版), 2009, 36(4): 345-354.

    LIU Shugen, MA Yongsheng, CAI Xunyu, et al. Characteristic and accumulation process of the natural gas from Sinian to Lower Paleozoic in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2009, 36(4): 345-354.
    [12]
    GAO Ping, LIU Guangdi, LASH G G, et al. Occurrences and origin of reservoir solid bitumen in Sinian Dengying Formation dolomites of the Sichuan Basin, SW China[J]. International Journal of Coal Geology, 2018, 200: 135-152.
    [13]
    YANG Chengyu, NI Zhiyong, LI Meijun, et al. Pyrobitumen in South China: organic petrology, chemical composition and geological significance[J]. International Journal of Coal Geology, 2018, 188: 51-63.
    [14]
    张鹏伟. 川中地区震旦—寒武系气藏硫化氢成因机制研究[D]. 北京: 中国石油大学(北京), 2019.

    ZHANG Pengwei. Origin of hydrogen sulfide in the ediacaran and Cambrian in the central Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2019.
    [15]
    蒋裕强, 陶艳忠, 谷一凡, 等. 四川盆地高石梯—磨溪地区灯影组热液白云石化作用[J]. 石油勘探与开发, 2016, 43(1): 51-60.

    JIANG Yuqiang, TAO Yanzhong, GU Yifan, et al. Hydrothermal dolomitization in Sinian Dengying Formation, Gaoshiti-Moxi area, Sichuan Basin, SW China[J]. Petroleum Exploration and Deve-lopment, 2016, 43(1): 51-60.
    [16]
    冯明友, 强子同, 沈平, 等. 四川盆地高石梯—磨溪地区震旦系灯影组热液白云岩证据[J]. 石油学报, 2016, 37(5): 587-598.

    FENG Mingyou, QIANG Zitong, SHEN Ping, et al. Evidences for hydrothermal dolomite of Sinian Dengying Formation in Gaoshiti-Moxi area, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 587-598.
    [17]
    SU Ao, CHEN Honghan, FENG Yuexing, et al. Dating and characterizing primary gas accumulation in Precambrian dolomite reservoirs, central Sichuan Basin, China: insights from pyrobitumen Re-Os and dolomite U-Pb geochronology[J]. Precambrian Research, 2020, 350: 105897.
    [18]
    LIU Yifeng, QIU Nansheng, XIE Zengye, et al. Overpressure compartments in the central paleo-uplift, Sichuan Basin, Southwest China[J]. AAPG Bulletin, 2016, 100(5): 867-888.
    [19]
    陈宗清. 四川盆地震旦系灯影组天然气勘探[J]. 中国石油勘探, 2010, 15(4): 1-14.

    CHEN Zongqing. Gas exploration in Sinian Dengying Formation, Sichuan Basin[J]. China Petroleum Exploration, 2010, 15(4): 1-14.
    [20]
    ZHU Guangyou, WANG Tongshan, XIE Zengye, et al. Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China: implications for gas exploration in old cratonic basins[J]. Precambrian Research, 2015, 262: 45-66.
    [21]
    罗冰, 罗文军, 王文之, 等. 四川盆地乐山—龙女寺古隆起震旦系气藏形成机制[J]. 天然气地球科学, 2015, 26(3): 444-455.

    LUO Bing, LUO Wenjun, WANG Wenzhi, et al. Formation mechanism of the Sinian natural gas reservoir in the Leshan-Longnvsi paleo-uplift, Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(3): 444-455.
    [22]
    周进高, 姚根顺, 杨光, 等. 四川盆地安岳大气田震旦系—寒武系储层的发育机制[J]. 天然气工业, 2015, 35(1): 36-44.

    ZHOU Jingao, YAO Genshun, YANG Guang, et al. Genesis mechanism of the Sinian-Cambrian reservoirs in the Anyue gas field, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 36-44.
    [23]
    HU Yongjie, CAI Chunfang, PEDERSON C L, et al. Dolomitization history and porosity evolution of a giant, deeply buried Ediacaran gas field (Sichuan Basin, China)[J]. Precambrian Research, 2020, 338: 105595.
    [24]
    单秀琴, 张静, 张宝民, 等. 四川盆地震旦系灯影组白云岩岩溶储层特征及溶蚀作用证据[J]. 石油学报, 2016, 37(1): 17-29.

    SHAN Xiuqin, ZHANG Jing, ZHANG Baomin, et al. Dolomite karst reservoir characteristics and dissolution evidences of Sinian Dengying Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(1): 17-29.
    [25]
    杜金虎, 汪泽成, 邹才能, 等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报, 2016, 37(1): 1-16.

    DU Jinhu, WANG Zecheng, ZOU Caineng, et al. Discovery of intra-cratonic rift in the Upper Yangtze and its coutrol effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37(1): 1-16.
    [26]
    ZHANG Pengwei, LIU Guangdi, CAI Chunfang, et al. Alteration of solid bitumen by hydrothermal heating and thermochemical sulfate reduction in the Ediacaran and Cambrian dolomite reservoirs in the central Sichuan Basin, SW China[J]. Precambrian Research, 2019, 321: 277-302.
    [27]
    SHI Chunhua, CAO Jian, BAO Jianping, et al. Source characterization of highly mature pyrobitumens using trace and rare earth element geochemistry: Sinian-Paleozoic paleo-oil reservoirs in South China[J]. Organic Geochemistry, 2015, 83-84: 77-93.
    [28]
    何冰辉. 关于峨眉山大火成岩省一些问题的研究现状[J]. 地球科学进展, 2016, 31(1): 23-42.

    HE Binghui. Research progress on some issues on the Emeishan large igneous province[J]. Advances in Earth Science, 2016, 31(1): 23-42.
    [29]
    何斌, 徐义刚, 肖龙, 等. 峨眉山大火成岩省的形成机制及空间展布: 来自沉积地层学的新证据[J]. 地质学报, 2003, 77(2): 194-202.

    HE Bin, XU Yigang, XIAO Long, et al. Generation and spatial distribution of the Emeishan large igneous province: new evidence from stratigraphic records[J]. Acta Geologica Sinica, 2003, 77(2): 194-202.
    [30]
    ZHONG Yuting, HE Bin, MUNDIL R, et al. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: implications for the termination age of Emeishan large igneous province[J]. Lithos, 2014, 204: 14-19.
    [31]
    袁波, 毛景文, 闫兴虎, 等. 四川大梁子铅锌矿成矿物质来源与成矿机制: 硫、碳、氢、氧、锶同位素及闪锌矿微量元素制约[J]. 岩石学报, 2014, 30(1): 209-220.

    YUAN Bo, MAO Jingwen, YAN Xinghu, et al. Sources of metallogenic materials and metallogenic mechanism of Daliangzi Ore Field in Sichuan Province: constraints from geochemistry of S, C, H, O, Sr isotope and trace element in sphalerite[J]. Acta Petrologica Sinica, 2014, 30(1): 209-220.
    [32]
    BOVEN A, PASTEELS P, PUNZALAN L E, et al. 40Ar/39Ar geochronological constraints on the age and evolution of the Permo-Triassic Emeishan Volcanic Province, Southwest China[J]. Journal of Asian Earth Sciences, 2002, 20(2): 157-175.
    [33]
    FENG Mingyou, WU Pengcheng, QIANG Zitong, et al. Hydrothermal dolomite reservoir in the Precambrian Dengying Formation of central Sichuan Basin, Southwestern China[J]. Marine and Petroleum Geology, 2017, 82: 206-219.
    [34]
    YAMADA Y, IMAMURA T, KAKIYAMA H, et al. Characteristics of meso-carbon microbeads separated from pitch[J]. Carbon, 1974, 12(3): 307-319.
    [35]
    HEIDENREICH R D, HESS W M, BAN L L. A test object and criteria for high resolution electron microscopy[J]. Journal of Applied Crystallography, 1968, 1: 1-19.
    [36]
    BROOKS J D, TAYLOR G H. The formation of graphitizing carbons from the liquid phase[J]. Carbon, 1965, 3(2): 185-193.
    [37]
    MOCHIDA I, ANDO T, MAEDA K, et al. Catalytic carbonization of aromatic hydrocarbons-Ⅸ: carbonization mechanism of heterocyclic sulfur compounds leading to the anisotropic coke[J]. Carbon, 1980, 18(2): 131-136.
    [38]
    WHITE J L, PRICE R J. The formation of mesophase microstructures during the pyrolysis of selected coker feedstocks[J]. Carbon, 1974, 12(3): 321-333.
    [39]
    WHITE J L. Mesophase mechanisms in the formation of the microstructure of petroleum coke[M]// DEVINEY M L, O'GRADY T M. Petroleum Derived Carbons. Washington: American Chemical Society, 1976: 282-314.
    [40]
    RIMMER S M, CRELLING J C, YOKSOULIAN L E. An occurrence of coked bitumen, Raton Formation, Purgatoire River Valley, Colorado, U.S.A. [J]. International Journal of Coal Geology, 2015, 141/142: 63-73.
    [41]
    徐昉昊. 川中地区震旦系灯影组和寒武系龙王庙组流体系统与油气成藏[D]. 成都: 成都理工大学, 2017.

    XU Fanghao. Fluid system and hydrocarbon accumulation of Sinian Dengying Formation and Cambrian Longwangmiao Formation in central Sichuan[D]. Chengdu: Chengdu University of Technology, 2017.
    [42]
    YANG Chengyu, NI Zhiyong, WANG Tieguan, et al. A new genetic mechanism of natural gas accumulation[J]. Scientific Reports, 2018, 8(1): 8336.
    [43]
    孙书双, 余华, 徐允良, 等. 高软化点包覆沥青的制备与表征[J]. 应用化工, 2020, 49(10): 2437-2441.

    SUN Shushuang, YU Hua, XU Yunliang, et al. Preparation and characterization of high softening point coating pitch[J]. Applied Chemical Industry, 2020, 49(10): 2437-2441.
    [44]
    EKSILIOGLU A, GENCAY N, YARDIM M F, et al. Mesophase AR pitch derived carbon foam: effect of temperature, pressure and pressure release time[J]. Journal of Materials Science, 2006, 41(10): 2743-2748.
    [45]
    WILSON N S F. Organic petrology, chemical composition, and reflectance of pyrobitumen from the El Soldado Cu deposit, Chile[J]. International Journal of Coal Geology, 2000, 43(1/4): 53-82.
    [46]
    STASIUK L D. The origin of pyrobitumens in Upper Devonian Leduc Formation gas reservoirs, Alberta, Canada: an optical and EDS study of oil to gas transformation[J]. Marine and Petroleum Geology, 1997, 14(7/8): 915-929.
    [47]
    GOODARZI F, GENTZIS T, JACKSON G, et al. Optical characteristics of heat-affected bitumens from the Nanisivik mine, N.W. Baffin Island, arctic Canada[J]. Energy Sources, 1993, 15(2): 359-376.
    [48]
    田誉娇. 中间相小球体源质分离及碳质中间相制备与应用[D]. 徐州: 中国矿业大学, 2013.

    TIAN Yujiao. Source material separation of mesophase spherule and preparation and application of carbonaceous mesophase[D]. Xuzhou: China University of Mining and Technology, 2013.
    [49]
    ZHU Lianqiang, LIU Guangdi, SONG Zezhang, et al. Hydrothermal activity in ultra-deep strata and its geological significance for deep earth gas exploration: implications from pyrobitumen in the Ediacaran-Lower Cambrian strata, Sichuan Basin[J]. International Journal of Coal Geology, 2022, 259: 104030.
    [50]
    樊小华. 煤沥青大分子多环芳烃的结构组成及其抽提分离和热聚合的研究[D]. 长沙: 湖南大学, 2019.

    FAN Xiaohua. Study on large polycyclic aromatic hydrocarbons in coal tar pitch and its extracted fractionations and thermal condensations[D]. Changsha: Hunan University, 2019.
    [51]
    李明. 环烷基富芳馏分油有序缩聚与中间相结构形成机制研究[D]. 青岛: 中国石油大学(华东), 2016.

    LI Ming. Study on orderly polycondensation of naphthenic base aromatic-rich components and formation mechanism of mesophase structure[D]. Qingdao: China University of Petroleum (East China), 2016.
    [52]
    郭建光. 高性能炭纤维用中间相沥青制备研究[D]. 长沙: 湖南大学, 2020.

    GUO Jianguang. Preparation of mesophase pitches for high-performance carbon fibers[D]. Changsha: Hunan University, 2020.
    [53]
    叶崇. 高导热中间相沥青碳纤维的制备及结构调控[D]. 长沙: 湖南大学, 2019.

    YE Chong. Preparation and structural regulation of high thermal conductivity mesophase pitch-based carbon fibers[D]. Changsha: Hunan University, 2019.
    [54]
    INOUE A. Formation of clay minerals in hydrothermal environments[M]//VELDE B. Origin and Mineralogy of Clays. Berlin: Springer, 1995: 268-329.
    [55]
    胡安平, 沈安江, 陈亚娜, 等. 基于U-Pb同位素年龄和团簇同位素(Δ47)温度约束的四川盆地震旦系灯影组构造—埋藏史重建[J]. 石油实验地质, 2021, 43(5): 896-905. doi: 10.11781/sysydz202105896

    HU Anping, SHEN Anjiang, CHEN Yana, et al. Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer(Δ47)[J]. Petroleum Geology & Experiment, 2021, 43(5): 896-905. doi: 10.11781/sysydz202105896
    [56]
    CHEN Chengsheng, QIN Shengfei, WANG Yunpeng, et al. High temperature methane emissions from large igneous provinces as contributors to Late Permian mass extinctions[J]. Nature Communications, 2022, 13(1): 6893.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (198) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return