Volume 46 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
ZHANG Liang, ZHU Yixiu, ZHOU Lu, QIN Kaixuan, JIANG Jun, XIONG Rongkun, LI Zezhou. Preservation mechanism of pores in middle and deep sandstone reservoirs of Cretaceous Bashijiqike Formation in Yingmaili area, Kuqa Depression, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 1075-1087. doi: 10.11781/sysydz2024051075
Citation: ZHANG Liang, ZHU Yixiu, ZHOU Lu, QIN Kaixuan, JIANG Jun, XIONG Rongkun, LI Zezhou. Preservation mechanism of pores in middle and deep sandstone reservoirs of Cretaceous Bashijiqike Formation in Yingmaili area, Kuqa Depression, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 1075-1087. doi: 10.11781/sysydz2024051075

Preservation mechanism of pores in middle and deep sandstone reservoirs of Cretaceous Bashijiqike Formation in Yingmaili area, Kuqa Depression, Tarim Basin

doi: 10.11781/sysydz2024051075
  • Received Date: 2023-08-07
  • Rev Recd Date: 2024-08-08
  • Publish Date: 2024-09-28
  • The sandstone reservoirs of the Cretaceous Bashijiqike Formation in the Yingmaili area on the southern slope of the Kuqa Depression within the Tarim Basin demonstrate favorable physical properties and considerable potential for oil and gas exploration. However, they are characterized by strong heterogeneity and unclear patterns of oil and gas distribution. In this study, the lithology and physical properties of the middle and deep reservoirs of the Bashijiqike Formation in the Yingmaili area were analyzed using core observation, a series of thin section analyses(standard, casting, cathodoluminescence, and inclusion thin sections), scanning electron microscopy(SEM), physical property testing, X-ray diffraction, and diagenesis reconstruction and physical property recovery techniques. It aims to explore the pore characteristics and preservation mechanisms, classify reservoir types, and clarify the distribution patterns and controlling factors of favorable reservoirs.The results show that the sandstone is mainly composed of feldspathic lithic sandstone and lithic feldspathic sandstone with low matrix content and medium maturity in both composition and structure. The primary pore type of the reservoir is residual primary pores, followed by secondary pores, including intergranular and intragranular dissolution pores, classifying the reservoir as a medium-to-high porosity and permeability type. The preservation of the primary pores in the middle and deep sandstones of the Bashijiqike Formation was mainly attributed to the depositional environment and subsequent diagenetic and reservoir evolution. The sandstone was initially formed in the microfacies of distributary channels at the front edge of a braided river delta with high hydrodynamics. The constantly overlapping channels formed thick and stable composite sand bodies. The strong hydrodynamics in the area led to high concentration and good sorting of sandstone clastic particles, providing the material basis for the formation of primary pores. The burial evolution process involved early long-term shallow burial and late-stage rapid deep burial, resulting in weak compaction transformation of the sandstone. Meanwhile, late-stage deep overpressure greatly enhanced the sand body's resistance to compaction, allowing for the preservation of residual primary pores. The continuously decreasing paleogeothermal gradient in the depression further contributed to the effective preservation of residual primary pores.

     

  • All authors disclose no relevant conflict of interests.
    The study was designed by ZHANG Liang, ZHU Yixiu, ZHOU Lu, and JIANG Jun. The experimental operation was completed by QIN Kaixuan, XIONG Rongkun, and LI Zezhou. The manuscript was drafted and revised by ZHANG Liang, ZHU Yixiu, QIN Kaixuan, XIONG Rongkun, and LI Zezhou. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 36(12): 1457-1469. doi: 10.7623/syxb201512001

    JIA Chengzao, PANG Xiongqi. Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1457-1469. doi: 10.7623/syxb201512001
    [2]
    张光亚, 马锋, 梁英波, 等. 全球深层油气勘探领域及理论技术进展[J]. 石油学报, 2015, 36(9): 1156-1166.

    ZHANG Guangya, MA Feng, LIANG Yingbo, et al. Domain and theory-technology progress of global deep oil & gas exploration[J]. Acta Petrolei Sinica, 2015, 36(9): 1156-1166.
    [3]
    吕志凯, 张建业, 张永宾, 等. 超深层裂缝性致密砂岩气藏储层连通性及开发启示: 以塔里木盆地库车坳陷克深2气藏为例[J]. 断块油气田, 2023, 30(1): 31-37, 95.

    LYU Zhikai, ZHANG Jianye, ZHANG Yongbin, et al. Reservoir connectivity of ultra-deep fractured tight sandstone gas reservoir and development enlightenment: taking Keshen 2 gas reservoir in Kuqa Depression of Tarim Basin as an example[J]. Fault-Block Oil and Gas Field, 2023, 30(1): 31-37, 95.
    [4]
    LAI Jin, WANG Guiwen, CHAI Yu, et al. Deep burial diagenesis and reservoir quality evolution of high-temperature, high-pressure sandstones: examples from Lower Cretaceous Bashijiqike Formation in Keshen area, Kuqa Depression, Tarim Basin of China[J]. AAPG Bulletin, 2017, 101(6): 829-862. doi: 10.1306/08231614008
    [5]
    张荣虎, 张惠良, 马玉杰, 等. 特低孔特低渗高产储层成因机制: 以库车坳陷大北1气田巴什基奇克组储层为例[J]. 天然气地球科学, 2008, 19(1): 75-82.

    ZHANG Ronghu, ZHANG Huiliang, MA Yujie, et al. Origin of extra low porosity and permeability high production reseroirs: a case from Bashijiqike reservoir of Dabei 1 oil field, Kuqa Depression[J]. Natural Gas Geoscience, 2008, 19(1): 75-82.
    [6]
    顾家裕, 方辉, 贾进华. 塔里木盆地库车坳陷白垩系辫状三角洲砂体成岩作用和储层特征[J]. 沉积学报, 2001, 19(4): 517-523. doi: 10.3969/j.issn.1000-0550.2001.04.007

    GU Jiayu, FANG Hui, JIA Jinhua. Diagenesis and reservoir characteristics of Cretaceous braided delta sandbody in Kuqa Depression, Tarim Basin[J]. Acta Sedimentologica Sinica, 2001, 19(4): 517-523. doi: 10.3969/j.issn.1000-0550.2001.04.007
    [7]
    王俊鹏, 张荣虎, 赵继龙, 等. 超深层致密砂岩储层裂缝定量评价及预测研究: 以塔里木盆地克深气田为例[J]. 天然气地球科学, 2014, 25(11): 1735-1745. doi: 10.11764/j.issn.1672-1926.2014.11.1735

    WANG Junpeng, ZHANG Ronghu, ZHAO Jilong, et al. Characteristics and evaluation of fractures in ultra-deep tight sandstone reservoir: taking Keshen Gasfield in Tarim Basin, NW China as an example[J]. Natural Gas Geoscience, 2014, 25(11): 1735-1745. doi: 10.11764/j.issn.1672-1926.2014.11.1735
    [8]
    金凤鸣, 张凯逊, 王权, 等. 断陷盆地深层优质碎屑岩储集层发育机理: 以渤海湾盆地饶阳凹陷为例[J]. 石油勘探与开发, 2018, 45(2): 247-256.

    JIN Fengming, ZHANG Kaisen, WANG Quan, et al. Formation mechanisms of good-quality clastic reservoirs in deep formations in rifted basins: a case study of Raoyang Sag in Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2018, 45(2): 247-256.
    [9]
    王杰青, 许淑梅, 任新成, 等. 准噶尔盆地腹部西侧侏罗系三工河组储层成岩作用及控制因素[J]. 石油学报, 2021, 42(3): 319-331.

    WANG Jieqing, XU Shumei, REN Xincheng, et al. Diageneses and controlling factors of Jurassic Sangonghe Formation reservoirs on the west side of the hinterland of Junggar Basin[J]. Acta Petrolei Sinica, 2021, 42(3): 319-331.
    [10]
    张荣虎, 邹伟宏, 陈戈, 等. 塔里木盆地北部下白垩统大型湖相砂坝特征及油气勘探意义[J]. 石油学报, 2018, 39(8): 845-857.

    ZHANG Ronghu, ZOU Weihong, CHEN Ge, et al. Characteristics and hydrocarbon exploration significance of the huge Lower Cretaceous lacustrine sand bar in the northern Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(8): 845-857.
    [11]
    马玉杰, 张荣虎, 唐雁刚, 等. 塔里木盆地库车坳陷白垩系巴什基奇克组岩相古地理[J]. 新疆石油地质, 2016, 37(3): 249-256.

    MA Yujie, ZHANG Ronghu, TANG Yangang, et al. Lithofacies paleogeography of Cretaceous Bashijiqike Formation in Kuqa Depression, Tarim Basin[J]. Xinjiang Petroleum Geology, 2016, 37(3): 249-256.
    [12]
    杨海军, 刘永福, 苏洲, 等. 塔北隆起深层碎屑岩优质储层形成主控因素[J]. 地质论评, 2020, 66(1): 169-179.

    YANG Haijun, LIU Yongfu, SU Zhou, et al. The main controlling factors for the formation of high quality clastic reservoirs in deeply buried strata of Tabei Uplift[J]. Geological Review, 2020, 66(1): 169-179.
    [13]
    操应长, 杨田, 王健, 等. 东营凹陷南坡沙四上亚段滩坝砂岩有效储层成因[J]. 中国石油大学学报(自然科学版), 2013, 37(6): 1-9.

    CAO Yingchang, YANG Tian, WANG Jian, et al. Genesis of effective reservoirs of beach-bar sandstone in upper part of the fourth member of Shahejie Formation in the southern slope of Dongying Sag[J]. Journal of China University of Petroleum, 2013, 37(6): 1-9.
    [14]
    高志勇, 马建英, 崔京钢, 等. 埋藏(机械)压实—侧向挤压地质过程下深层储层孔隙演化与预测模型[J]. 沉积学报, 2018, 36(1): 176 187.

    GAO Zhiyong, MA Jianying, CUI Jinggang, et al. Deep reservoir pore evolution model of a geological process from burial compaction to lateral extrusion[J]. Acta Sedimentologica Sinica, 2018, 36(1): 176-187.
    [15]
    操应长, 远光辉, 杨海军, 等. 含油气盆地深层—超深层碎屑岩油气勘探现状与优质储层成因研究进展[J]. 石油学报, 2022, 43(1): 112-140.

    CAO Yingchang, YUAN Guanghui, YANG Haijun, et al. Current situation of oil and gas exploration and research progress of the origin of high-quality reservoirs in deep-ultra-deep clastic reservoirs of petroliferous basins[J]. Acta Petrolei Sinica, 2022, 43(1): 112-140.
    [16]
    胡作维, 李云, 黄思静, 等. 砂岩储层中原生孔隙的破坏与保存机制研究进展[J]. 地球科学进展, 2012, 27(1): 14-25.

    HU Zuowei, LI Yun, HUANG Sijing, et al. Reviews of the destruction and preservation of primary porosity in the sandstone reservoirs[J]. Advances in Earth Science, 2012, 27(1): 14-25.
    [17]
    周学文, 林会喜, 郭景祥, 等. 塔里木盆地库车坳陷南斜坡新和地区白垩系亚格列木组沉积模式及油气意义[J]. 石油实验地质, 2023, 45(2): 266-279. doi: 10.11781/sysydz202302266

    ZHOU Xuewen, LIN Huixi, GUO Jingxiang, et al. Depositional model and petroleum significance of the Cretaceous Yageliemu Formation in Xinhe area on the southern slope of Kuqa Depression, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 45(2): 266-279. doi: 10.11781/sysydz202302266
    [18]
    何登发, 周新源, 杨海军, 等. 库车坳陷的地质结构及其对大油气田的控制作用[J]. 大地构造与成矿学, 2009, 33(1): 19-32.

    HE Dengfa, ZHOU Xinyuan, YANG Haijun, et al. Geological structure and its controls on giant oil and gas fields in Kuqa Depression, Tarim Basin: a clue from new shot seismic data[J]. Geotectonica et Metallogenia, 2009, 33(1): 19-32.
    [19]
    贾承造, 魏国齐, 李本亮, 等. 中国中西部两期前陆盆地的形成及其控气作用[J]. 石油学报, 2003, 24(2): 13-17.

    JIA Chengzao, WEI Guoqi, LI Benliang, et al. Tectonic evolution of two-epoch foreland basins and its control for natural gas accumulation in China's mid-western areas[J]. Acta Petrolei Sinica, 2003, 24(2): 13-17.
    [20]
    张坦, 齐育楷, 姚威, 等. 塔里木盆地库车坳陷南斜坡三叠系烃源岩热演化特征及油气地质意义[J]. 石油实验地质, 2022, 44(6): 1018-1027. doi: 10.11781/sysydz2022061018

    ZHANG Tan, QI Yukai, YAO Wei, et al. Thermal evolution characte-ristics of Triassic source rocks and their petroleum geological significance on the southern slope of Kuqa Depression, Tarim Basin[J]. Petroleum Geology & Experiment, 2022, 44(6): 1018-1027. doi: 10.11781/sysydz2022061018
    [21]
    贾承造, 魏国齐, 姚慧君, 等. 塔里木盆地油气勘探从书: 盆地构造演化与区域构造地质[M]. 北京: 石油工业出版社, 1995.

    JIA Chengzao, WEI Guoqi, YAO Huijun, et al. Book series on petroleum exploration in the Tarim Basin: tectonic evolution and regional structural geology[M]. Beijing: Petroleum Industry Press, 1995.
    [22]
    李曰俊, 杨海军, 张光亚, 等. 重新划分塔里木盆地塔北隆起的次级构造单元[J]. 岩石学报, 2012, 28(8): 2466-2478.

    LI Yuejun, YANG Haijun, ZHANG Guangya, et al. Redivision of the tectonic units of Tabei Rise in Tarim Basin, NW China[J]. Acta Petrologica Sinica, 2012, 28(8): 2466-2478.
    [23]
    徐珂, 张辉, 刘新宇, 等. 库车坳陷深层裂缝性储层现今地应力特征及其对天然气勘探开发的指导意义[J]. 油气地质与采收率, 2022, 29(2): 34-45.

    XU Ke, ZHANG Hui, LIU Xinyu, et al. Current in-situ stress characteristics of deep fractured reservoirs in Kuqa Depression and its guiding significance to natural gas exploration and deve-lopment[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2): 34-45.
    [24]
    贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质, 1999, 20(3): 177-183.

    JIA Chengzao. Structural characteristics and oil/gas accumulative regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999, 20(3): 177-183.
    [25]
    田作基, 宋建国. 塔里木库车新生代前陆盆地构造特征及形成演化[J]. 石油学报, 1999, 20(4): 7-13.

    TIAN Zuoji, SONG Jianguo. Tertiary structure characteristics and evolution of Kuche Foreland Basin[J]. Acta Petrolei Sinica, 1999, 20(4): 7-13.
    [26]
    张亮, 曾昌民, 黄智斌, 等. 塔里木盆地西南坳陷柯东1号构造白垩系原油特征[J]. 新疆地质, 2013, 31(2): 199-201.

    ZHANG Liang, ZENG Changmin, HUANG Zhibin, et al. The characteristics of crude oil from Cretaceous in No. 1 Kedong structure of southwest depression in the Tarim Basin[J]. Xinjiang Geology, 2013, 31(2): 199-201.
    [27]
    寿建峰, 张惠良, 斯春松, 等. 砂岩动力成岩作用[M]. 北京: 石油工业出版社, 2005.

    SHOU Jianfeng, ZHANG Huiliang, SI Chunsong, et al. Dynamic diagenesis of sandstone[M]. Beijing: Petroleum Industry Press, 2005.
    [28]
    朱毅秀, 杨程宇, 陈明鑫, 等. 安塞油田杏河区长6储层成岩作用及对孔隙的影响[J]. 特种油气藏, 2013, 20(3): 51-55.

    ZHU Yixiu, YANG Chengyu, CHEN Mingxin, et al. Diagenesis of Chang 6 reservoirs of Xinghe area in Ansai Oilfield and its influence on reservoir pores[J]. Special Oil and Gas Reservoirs, 2013, 20(3): 51-55.
    [29]
    HOUSEKNECHT D W. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones[J]. AAPG Bulletin, 1987, 71(6): 633-642.
    [30]
    朱毅秀. 储层实验测试分析简明教程[M]. 北京: 石油工业出版社, 2022.

    ZHU Yixiu. Brief course of reservoir experimental test analysis[M]. Beijing: Petroleum Industry Press, 2022.
    [31]
    SCHMIDT V, MCDONALD D A. The role of secondary porosity in the course of sandstone diagenesis[M]. SCHOLLE P A, SCHLUGER P R. Aspects of diagenesis. Tulsa: SEPM, 1979: 175-207.
    [32]
    SURDAM R C, CROSSEY L J, HAGEN E S, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-23.
    [33]
    袁静, 成荣红, 朱忠谦, 等. 库车坳陷DB气田白垩系巴什基奇克组砂岩的多期溶蚀[J]. 石油与天然气地质, 2016, 37(4): 546-555.

    YUAN Jing, CHENG Ronghong, ZHU Zhongqian, et al. Multi-staged dissolution of sandstone in Cretaceous Bashijiqike Formation in DB gas field of Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2016, 37(4): 546-555.
    [34]
    李易隆, 贾爱林, 何东博. 致密砂岩有效储层形成的控制因素[J]. 石油学报, 2013, 34(1): 71-82.

    LI Yilong, JIA Ailin, HE Dongbo. Control factors on the formation of effective reservoirs in tight sands: examples from Guang'an and Sulige gasfields[J]. Acta Petrolei Sinica, 2013, 34(1): 71-82.
    [35]
    张鹏辉, Lee Ⅱ Y, 张金亮, 等. 砂岩储集层粒间孔隙保存机制[J]. 天然气工业, 2019, 39(7): 31-40.

    ZHANG Penghui, LEE Ⅱ Y, ZHANG Jingliang, et al. Preservation mechanisms of intergranular pores in sandstone reservoirs[J]. Natural Gas Industry, 2019, 39(7): 31-40.
    [36]
    TAYLOR T R, GILES M R, HATHON L A, et al. Sandstone diagenesis and reservoir quality prediction: models, myths, and reality[J]. AAPG Bulletin, 2010, 94(8): 1093-1132.
    [37]
    黄思静, 黄培培, 王庆东, 等. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7-13.

    HUANG Sijing, HUANG Peipei, WANG Qingdong, et al. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7-13.
    [38]
    BLOCH S, LANDER R H, BONNELL L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: origin and predictability[J]. AAPG Bulletin, 2002, 86(2): 301-328.
    [39]
    AJDUKIEWICZ J M, LANDER R H. Sandstone reservoir quality prediction: the state of the art[J]. AAPG Bulletin, 2010, 94(8): 1083-1091.
    [40]
    孙东权, 李文浩, 卢双舫, 等. 塔北隆起英买力地区舒善河组储层特征与控制因素[J]. 东北石油大学学报, 2020, 44(6): 82-93.

    SUN Dongquan, LI Wenhao, LU Shuangfang, et al. Reservoir characteristics and controlling factors of Shushanhe Formation in Yingmaili area of Tabei Uplift[J]. Journal of Northeast Petroleum University, 2020, 44(6): 82-93.
    [41]
    曾庆鲁, 莫涛, 赵继龙, 等. 7 000 m以深优质砂岩储层的特征、成因机制及油气勘探意义: 以库车坳陷下白垩统巴什基奇克组为例[J]. 天然气工业, 2020, 40(1): 38-47.

    ZENG Qinglu, MO Tao, ZHAO Jilong, et al. Characteristics, genetic mechanism and oil & gas exploration significance of high-quality sandstone reservoirs deeper than 7 000 m: a case study of the Bashijiqike Formation of Lower Cretaceous in the Kuqa Depression[J]. Natural Gas Industry, 2020, 40(1): 38-47.
    [42]
    MORAD S, AL-RAMADAN K, KETZER J M, et al. The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy[J]. AAPG Bulletin, 2010, 94(8): 1267-1309.
    [43]
    高志勇, 崔京钢, 冯佳睿, 等. 埋藏压实—构造抬升地质过程下储层孔隙回弹的演化过程模型[J]. 地质科学, 2018, 53(2): 531-546.

    GAO Zhiyong, CUI Jinggang, FENG Jiarui, et al. Sandstone pore rebounding evolution model of a geological process from burial compaction to tectonic uplift[J]. Chinese Journal of Geology, 2018, 53(2): 531-546.
    [44]
    寿建峰, 朱国华. 砂岩储层孔隙保存的定量预测研究[J]. 地质科学, 1998(2): 118-124.

    SHOU Jianfeng, ZHU Guohua. Study on quantitative prediction of porosity preservation in sandstone reservoirs[J]. Chinese Journal of Geology, 1998(2): 118-124.
    [45]
    顾家裕, 贾进华, 方辉. 塔里木盆地储层特征与高孔隙度、高渗透率储层成因[J]. 科学通报, 2002, 47(S1): 9-15.

    GU Jiayu, JIA Jinhua, FANG Hui. Reservoir characteristics and genesis of high-porosity and high-permeability reservoirs in Tarim Basin[J]. Chinese Science Bulletin, 2002, 47(S1): 12-19.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (89) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return