Citation: | YUAN Longmiao, MA Rong, CHEN Jianzhen, SHAO Yuanyuan, WU Yingqin. Preparation of molecularly imprinted polymer microspheres and their adsorption performance for 5α-cholestane[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 1098-1109. doi: 10.11781/sysydz2024051098 |
[1] |
HAO Fang. Enrichment mechanism and prospects of deep oil and gas[J]. Acta Geologica Sinica, 2022, 96(3): 742-756. doi: 10.1111/1755-6724.14961
|
[2] |
贾承造, 张水昌. 中国海相超深层油气形成[J]. 地质学报, 2023, 97(9): 2775-2801.
JIA Chengzao, ZHANG Shuichang. The formation of marine ultra-deep petroleum in China[J]. Journal of Geology, 2023, 97(9): 2775-2801.
|
[3] |
陈代钊, 钱一雄. 深层—超深层白云岩储集层: 机遇与挑战[J]. 古地理学报, 2017, 19(2): 187-196.
CHEN Daizhao, QIAN Yixiong. Deep or super-deep dolostone reservoirs: opportunities and challenges[J]. Journal of Paleogeography, 2017, 19(2): 187-196.
|
[4] |
KASHIRTSEV V A, DOLZHENKO K V, FOMIN A N, et al. Hydrocarbon composition of bitumen from deeply buried terrestrial organic matter (zone of apocatagenesis)[J]. Russian Geology and Geophysics, 2017, 58(6): 702-710. doi: 10.1016/j.rgg.2016.03.018
|
[5] |
关晓东, 郭磊. 深层—超深层油气成藏研究新进展及展望[J]. 石油实验地质, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203
GUAN Xiaodong, GUO Lei. New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata[J]. Petroleum Geology & Experiment, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203
|
[6] |
HASINGER M, SCHERR K E, LUNDAA T, et al. Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions[J]. Journal of Biotechnology, 2012, 157(4): 490-498. doi: 10.1016/j.jbiotec.2011.09.027
|
[7] |
EKBERG B, MOSBACH K. Molecular imprinting: a technique for producing specific separation materials[J]. Trends in Biotechnology, 1989, 7(4): 92-96. doi: 10.1016/0167-7799(89)90006-1
|
[8] |
华松杰. 新型碳基表面分子印迹聚合物的制备及脱硫性能的研究[D]. 北京: 中国石油大学(北京), 2019.
HUA Songjie. Preparation and adsorption performance investigation of novel surface molecularly imprinted polymer on the carbon material[D]. Beijing: China University of Petroleum (Beijing), 2019.
|
[9] |
张杰, 王永健, 于奡. 分子印迹技术在甾类物质识别和分析中的应用[J]. 化学试剂, 2005, 27(6): 331-335, 351. doi: 10.3969/j.issn.0258-3283.2005.06.005
ZHANG Jie, WANG Yongjian, YU Ao. The application of molecular imprinting technique in steroid recognition and analysis[J]. Chemical Reagents, 2005, 27(6): 331-335, 351. doi: 10.3969/j.issn.0258-3283.2005.06.005
|
[10] |
LI Aimin, HUANG Xiaolan, YAN Ling, et al. Pseudo-template molecularly imprinted polymeric fiber solid-phase microextraction coupled to gas chromatography for ultrasensitive determination of 2, 4, 6-trihalophenol disinfection by-products[J]. Journal of Chromatography A, 2022, 1678: 463322. doi: 10.1016/j.chroma.2022.463322
|
[11] |
RAMANAVICIUS S, SAMUKAITE-BUBNIENE U, RATAUTAITE V, et al. Electrochemical molecularly imprinted polymer based sensors for pharmaceutical and biomedical applications (review)[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 215: 114739. doi: 10.1016/j.jpba.2022.114739
|
[12] |
WANG Xingguo, LIU Zhixiang, LU Jian, et al. Highly selective membrane for efficient separation of environmental determinands: enhanced molecular imprinting in polydopamine-embedded porous sleeve[J]. Chemical Engineering Journal, 2022, 449: 137825. doi: 10.1016/j.cej.2022.137825
|
[13] |
WANG Xuemei, HUANG Pengfei, MA Xiaomin, et al. Enhanced in-out-tube solid-phase microextraction by molecularly imprinted polymers-coated capillary followed by HPLC for Endocrine Disrupting Chemicals analysis[J]. Talanta, 2019, 194: 7-13. doi: 10.1016/j.talanta.2018.10.027
|
[14] |
WANG Rui, LI Si, CHEN Dawei, et al. Selective extraction and enhanced-sensitivity detection of fluoroquinolones in swine body fluids by liquid chromatography-high resolution mass spectrometry: application in long-term monitoring in livestock[J]. Food Chemistry, 2021, 341: 128269. doi: 10.1016/j.foodchem.2020.128269
|
[15] |
KUNATH S, MARCHYK N, HAUPT K, et al. Multi-objective optimization and design of experiments as tools to tailor molecularly imprinted polymers specific for glucuronic acid[J]. Talanta, 2013, 105: 211-218. doi: 10.1016/j.talanta.2012.11.029
|
[16] |
ASHLEY J, SHAHBAZI M A, KANT K, et al. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: progress and perspectives[J]. Biosensors and Bioelectronics, 2017, 91: 606-615. doi: 10.1016/j.bios.2017.01.018
|
[17] |
马荣, 原陇苗, 刘艳红, 等. 甾烷类化合物分子印迹聚合物功能单体的筛选及MIPs制备[J]. 石油实验地质, 2023, 45(3): 537-548. doi: 10.11781/sysydz202303537
MA Rong, YUAN Longmiao, LIU Yanhong, et al. Screening of functional monomers and preparation of molecularly imprinted polymers (MIPs) in molecularly imprinted polymers of steranes[J]. Petroleum Geology & Experiment, 2023, 45(3): 537-548. doi: 10.11781/sysydz202303537
|
[18] |
VLATAKIS G, ANDERSSON L I, MVLLER R, et al. Drug assay using antibody mimics made by molecular imprinting[J]. Nature, 1993, 361(6413): 645-647. doi: 10.1038/361645a0
|
[19] |
WHITCOMBE M J, VULFSON E N. Imprinted polymers[J]. Advanced Materials, 2001, 13(7): 467-478. doi: 10.1002/1521-4095(200104)13:7<467::AID-ADMA467>3.0.CO;2-T
|
[20] |
CHEN Lingxin, XU Shoufang, LI Jihua. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications[J]. Chemical Society Reviews, 2011, 40(5): 2922-2942. doi: 10.1039/c0cs00084a
|
[21] |
SHIRNESHAN G, BAKHTIARI A R, MEMARIANI M. Distribution and origins of n-alkanes, hopanes, and steranes in rivers and marine sediments from southwest Caspian coast, Iran: implications for identifying petroleum hydrocarbon inputs[J]. Environmental Science and Pollution Research, 2016, 23(17): 17484-17495. doi: 10.1007/s11356-016-6825-8
|
[22] |
张圣祖, 郑敏, 邓帆, 等. 胆固醇分子印迹聚合有机凝胶的制备及其选择性吸附研究[J]. 高分子学报, 2011(4): 390-394.
ZHANG Shengzu, ZHENG Min, DENG Fan, et al. Preparation of cholesterol imprinted polymerized organogel and selectivity adsorption ability[J]. Acta Polymerica Sinica, 2011(4): 390-394.
|
[23] |
ZHANG Xiaotao, SHEN Bin, YANG Jiajia, et al. Evolution characteristics of maturity-related sterane and terpane biomarker parameters during hydrothermal experiments in a semi-open system under geological constraint[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108412. doi: 10.1016/j.petrol.2021.108412
|
[24] |
LIU Shiju, GAO Gang, JIN Jun, et al. Source rock with high abundance of C28 regular sterane in typical brackish-saline lacustrine sediments: biogenic source, depositional environment and hydrocarbon generation potential in Junggar Basin, China[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109670. doi: 10.1016/j.petrol.2021.109670
|
[25] |
ZHANG Luxuan, YU Hua, CHEN Haifang, et al. Application of molecular imprinting polymers in separation of active compounds from plants[J]. Fitoterapia, 2023, 164: 105383. doi: 10.1016/j.fitote.2022.105383
|
[26] |
HE Jinxian, ZHANG Xiaoli, WU Caifang. Geochemical characteristics and their geological significance of the sterane in the crude oil of Chang 2 oil group in Yanchang Formation in Xifeng area, Ordos Basin[J]. Acta Geologica Sinica, 2019, 93(S2): 68-70. doi: 10.1111/1755-6724.14198
|
[27] |
SUN Xiaoli, WANG Jincheng, LI Yun, et al. Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples[J]. Journal of Chromatography A, 2014, 1359: 1-7. doi: 10.1016/j.chroma.2014.07.007
|
[28] |
MIRZAJANI R, KESHAVARZ A. The core-shell nanosized magnetic molecularly imprinted polymers for selective preconcentration and determination of ciprofloxacin in human fluid samples using a vortex-assisted dispersive micro-solid-phase extraction and high-performance liquid chromatography[J]. Journal of the Iranian Chemical Society, 2019, 16(11): 2291-2306. doi: 10.1007/s13738-019-01701-7
|
[29] |
SONG Yiping, ZHANG Lei, WANG Gengnan, et al. Dual-dummy-template molecularly imprinted polymer combining ultra performance liquid chromatography for determination of fluoroquino-lones and sulfonamides in pork and chicken muscle[J]. Food Control, 2017, 82: 233-242. doi: 10.1016/j.foodcont.2017.07.002
|
[30] |
SURAPONG N, SANTALADCHAIYAKIT Y, BURAKHAM R. A water-compatible magnetic dual-template molecularly imprinted polymer fabricated from a ternary biobased deep eutectic solvent for the selective enrichment of organophosphorus in fruits and vegetables[J]. Food Chemistry, 2022, 384: 132475. doi: 10.1016/j.foodchem.2022.132475
|
[31] |
FLAM F. Molecular imprints make a mark[J]. Science, 1994, 263(5151): 1221-1222. doi: 10.1126/science.8122101
|
[32] |
KOMIYAMA M, MORI T, ARIGA K. Molecular imprinting: materials nanoarchitectonics with molecular information[J]. Bulletin of the Chemical Society of Japan, 2018, 91(7): 1075-1111. doi: 10.1246/bcsj.20180084
|
[33] |
AN Lijuan, PANG Zhiyuan, GUO Yanling. Synthesis of magnetic molecular imprinted silica spheres for recognition of ciprofloxacin by metal-coordinate interaction[J]. Journal of Sol-Gel Science and Technology, 2015, 76(1): 36-42. doi: 10.1007/s10971-015-3747-8
|
[34] |
BHOGAL S, KAUR K, MOHIUDDIN I, et al. Hollow porous molecularly imprinted polymers as emerging adsorbents[J]. Environmental Pollution, 2021, 288: 117775. doi: 10.1016/j.envpol.2021.117775
|
[35] |
QIN Lei, LIU Weifeng, LIU Xuguang, et al. A review of nano-carbon based molecularly imprinted polymer adsorbents and their adsorption mechanism[J]. New Carbon Materials, 2020, 35(5): 459-485. doi: 10.1016/S1872-5805(20)60503-0
|
[36] |
BAI Qingyan, HUANG Chao, MA Shujuan, et al. Rapid adsorption and detection of copper ions in water by dual-functional ion-imprinted polymers doping with carbon dots[J]. Separation and Purification Technology, 2023, 315: 123666. doi: 10.1016/j.seppur.2023.123666
|
[37] |
高雯璐, 周文, 徐浩, 等. 高演化富有机质页岩地层条件下吸附气量计算新方法[J]. 特种油气藏, 2023, 30(2): 71-77. doi: 10.3969/j.issn.1006-6535.2023.02.010
GAO Wenlu, ZHOU Wen, XU Hao, et al. A new method for calculating adsorbed gas amount in highly evolved shale formations with rich organic matters[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 71-77. doi: 10.3969/j.issn.1006-6535.2023.02.010
|
[38] |
张城玮, 程时清, 周文, 等. 考虑修正BET吸附的异常高压页岩气藏物质平衡计算方法[J]. 特种油气藏, 2022, 29(2): 77-82. doi: 10.3969/j.issn.1006-6535.2022.02.011
ZHANG Chengwei, CHENG Shiqing, ZHOU Wen, et al. A calculation method for material balance of shale gas reservoirs under abnormally high pressure considering modified BET adsorption[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 77-82. doi: 10.3969/j.issn.1006-6535.2022.02.011
|
[39] |
YU Dan, HU Xiaolei, WEI Shoutai, et al. Dummy molecularly imprinted mesoporous silica prepared by hybrid imprinting method for solid-phase extraction of bisphenol A[J]. Journal of Chromatography A, 2015, 1396: 17-24. doi: 10.1016/j.chroma.2015.04.006
|
[40] |
CHEN Meijun, YANG Hailin, SI Yamin, et al. A hollow visible-light-responsive surface molecularly imprinted polymer for the detection of chlorpyrifos in vegetables and fruits[J]. Food Chemistry, 2021, 355: 129656. doi: 10.1016/j.foodchem.2021.129656
|
[41] |
YANG Jiajia, LI Yun, WANG Jincheng, et al. Novel sponge-like molecularly imprinted mesoporous silica material for selective isolation of bisphenol A and its analogues from sediment extracts[J]. Analytica Chimica Acta, 2015, 853: 311-319. doi: 10.1016/j.aca.2014.09.051
|
[42] |
刘媛, 刘江, 李迎春, 等. 基于改性硅胶"接枝"聚合法制备高特异性红霉素固相萃取材料及其评价[J]. 沈阳药科大学学报, 2014, 31(7): 505-512.
LIU Yuan, LIU Jiang, LI Yingchun, et al. Preparation and evaluation of erythromycin solid-phase extraction materials based on modified silica gel "grafting" polymerization[J]. Journal of Shenyang Pharmaceutical University, 2014, 31(7): 505-512.
|
[43] |
SHIOMI T, MATSUI M, MIZUKAMI F, et al. A method for the molecular imprinting of hemoglobin on silica surfaces using silanes[J]. Biomaterials, 2005, 26(27): 5564-5571. doi: 10.1016/j.biomaterials.2005.02.007
|