Volume 46 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
HE Faqi, ZHU Jianhui, QI Rong, WU Yingli, MIAO Jiujun, JIANG Longyan, WANG Dongyan, CHEN Xian. Prediction of fine-grained sedimentary lithofacies distribution based on astronomical cycle isochronous lattice: a case study of Triassic Chang 7 member of Fuxian area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 927-940. doi: 10.11781/sysydz202405927
Citation: HE Faqi, ZHU Jianhui, QI Rong, WU Yingli, MIAO Jiujun, JIANG Longyan, WANG Dongyan, CHEN Xian. Prediction of fine-grained sedimentary lithofacies distribution based on astronomical cycle isochronous lattice: a case study of Triassic Chang 7 member of Fuxian area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 927-940. doi: 10.11781/sysydz202405927

Prediction of fine-grained sedimentary lithofacies distribution based on astronomical cycle isochronous lattice: a case study of Triassic Chang 7 member of Fuxian area, Ordos Basin

doi: 10.11781/sysydz202405927
  • Received Date: 2023-11-08
  • Rev Recd Date: 2024-08-22
  • Publish Date: 2024-09-28
  • Predicting the thickness distribution of different types of continental lithofacies is a fundamental task for selecting and evaluating continental shale oil-rich zones. Research on oil-bearing conditions, reservoir characteristics, and mobility of different types of lithofacies plays an important role in target area selection and the deployment of horizontal well sections. Based on core observation and logging identification, spectrum analysis of logging data was carried out. Stable astronomical orbital time cycles were introduced to perform spatio-temporal tuning. A high-frequency sequence isochronous lattice for drilling well comparison was established and the planar thickness variation trends of different types of lithofacies in each sequence cycle were quantitatively calculated, providing insights into lithofacies distribution patterns. Research on the 7th member (Chang 7) of Triassic Yan-chang Formation in the Fuxian area of the southern Ordos Basin showed that the natural gamma logging curves contained several sets of astronomical cycle information, among which 6 complete stable 405 kyr long eccentricity astronomical cycles could be identified. Based on the observation of the whole core section of Chang 7 member in well R203 and logging facies characteristics analysis, a reasonable high-frequency isochronous lattice was established for well-to-well comparison. The results showed that mud shale and laminated shale mainly developed in the bottom cyclic strata from Chang 73 to Chang 72 sub-member, and the fine-grained sandstone and siltstone were mostly developed in strata of cycles Ⅳ to Ⅴ from the middle and upper parts of Chang 72 to the bottom of Chang 71. Lateral comparison between wells showed that the mud shale and laminated shale lithofacies in the early cycles were widely distributed. During cycle Ⅰ period, these facies were mainly distributed in the southwest of the study area, and during cycle Ⅱ period, they were distributed in the west and east-northeast, with thicker storage in the central area. The fine-grained sandstone thickness distribution in strata of cycles Ⅳ to Ⅴ was controlled by a northeast-southwest sedimentary system, with a planar distribution from the north-northeast to the south-southwest, further extending to the southwest along wells ZF 27 to ZF 32. Three types of source and reservoir combinations were formed in Chang 7 member. The combination of laminated shale and fine-grained sandstone lithofacies occurred from the middle and upper parts of Chang 73 and Chang 72 sub-members to the lower part of Chang 71 sub-member, primarily distributed in the central-north, north, and northeast parts of the Fuxian area. The shale lithofacies thickness was well developed in Chang 73 sub-member, mainly distributed in the northeast, east, and southwest regions of the Fuxian area.

     

  • Authors ZHU Jianhui, WU Yingli, MIAO Jiujun, WANG Dongyan, and CHEN Xian are employees of the sponsor of this journal, and they did not take part in peer review or decision making of this article.
    The study was designed and the research method was determined by HE Faqi and QI Rong. The research and implementation of the project was completed by ZHU Jianhui, WU Yingli, MIAO Jiujun, and JIANG Longyan. The first draft of the paper was completed by ZHU Jianhui. HE Faqi, WU Yingli, and MIAO Jiujun participated in the revision of the paper. WANG Dongyan and CHEN Xian participated in data processing in the paper. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11.

    YANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11.
    [2]
    付锁堂, 金之钧, 付金华, 等. 鄂尔多斯盆地延长组7段从致密油到页岩油认识的转变及勘探开发意义[J]. 石油学报, 2021, 42(5): 561-569.

    FU Suotang, JIN Zhijun, FU Jinhua, et al. Transformation of understanding from tight oil to shale oil in the member 7 of Yanchang Formation in Ordos Basin and its significance of exploration and development[J]. Acta Petrolei Sinica, 2021, 42(5): 561-569.
    [3]
    杨华, 张文正. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用: 地质地球化学特征[J]. 地球化学, 2005, 34(2): 147-154.

    YANG Hua, ZHANG Wenzheng. Leading effect of the seventh member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: geology and geochemistry[J]. Geochimica, 2005, 34(2): 147-154.
    [4]
    张文正, 杨华, 彭平安, 等. 晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响[J]. 地球化学, 2009, 38(6): 573-582.

    ZHANG Wenzheng, YANG Hua, PENG Pingan, et al. The influence of Late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin[J]. Geochimica, 2009, 38(6): 573-582.
    [5]
    常莎莎. 鄂尔多斯盆地胡尖山地区三叠系延长组长7油层组沉积相研究[D]. 成都: 西南石油大学, 2012.

    CHANG Shasha. Sedimentary facies study of the Triassic Yanchang Group 7 oil formation in the Hujianshan area of the Ordos Basin[D]. Chengdu: Southwest Petroleum University, 2012.
    [6]
    郭懿萱. 鄂尔多斯盆地安塞油田三叠系延长组长7油层组沉积相及储层特征研究[D]. 西安: 西北大学, 2013.

    GUO Yixuan. Study on sedimentary facies and reservoir characteristics of Chang 7 oil formation in Ansai oilfield of Ordos Basin[D]. Xi'an: Northwest University, 2013.
    [7]
    邓秀芹, 蔺昉晓, 刘显阳, 等. 鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的探讨[J]. 古地理学报, 2008, 10(2): 159-166.

    DENG Xiuqin, LIN Fangxiao, LIU Xianyang, et al. Discussion on relationship between sedimentary evolution of the Triassic Yanchang Formation and the Early Indosinian Movement in Ordos Basin[J]. Journal of Palaeogeography, 2008, 10(2): 159-166.
    [8]
    邓南涛, 张枝焕, 任来义, 等. 鄂尔多斯盆地南部延长组烃源岩生物标志物特征及生烃潜力分析[J]. 矿物岩石地球化学通报, 2014, 33(3): 317-325.

    DENG Nantao, ZHANG Zhihuan, REN Laiyi, et al. Biomarker characteristics and hydrocarbon generation potential of hydrocarbon source rocks from the Yanchang Formation in the south Ordos Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(3): 317-325.
    [9]
    李威, 文志刚. 鄂尔多斯盆地马岭地区延长组长7烃源岩特征与分布[J]. 断块油气田, 2014, 21(1): 24-27.

    LI Wei, WEN Zhigang. Characteristics and distribution of Chang 7 source rocks of Yangchang Formation in Maling area of Ordos Basin[J]. Fault-Block Oil & Gas Field, 2014, 21(1): 24-27.
    [10]
    何浩男, 赵卫卫, 王汇智, 等. 鄂尔多斯盆地东南部延长组长7致密油成藏机制及主控因素[J]. 非常规油气, 2019, 6(3): 33-40.

    HE Haonan, ZHAO Weiwei, WANG Huizhi, et al. Mechanism of hydrocarbon accumulation formation and main controlling factors in Chang-7 tight oil of Yanchang Formation, southeastern Ordos Basin[J]. Unconventional Oil & Gas, 2019, 6(3): 33-40.
    [11]
    张国伟, 周鼎武, 于在平, 等. 秦岭造山带岩石圈组成、结构和演化特征[C]//秦岭造山带学术讨论会论文选集. 西安: 西北大学出版社, 1991: 121-138.

    ZHANG Guowei, ZHOU Dingwu, YU Zaiping, et al. Lithospheric composition, structure and evolution characteristics of the Qinling Orogenic Belt[C]//Selected Papers of the Qinling Orogenic Belt Symposium. Xi'an: Northwest University Press, 1991: 121-138.
    [12]
    杨俊杰. 鄂尔多斯盆地构造演化与油气分布规律[M]. 北京: 石油工业出版社, 2002: 20-45.

    YANG Junjie. Tectonic evolution and oil-gas reservoirs distribution in Ordos Basin[M]. Beijing: Petroleum Industry Press, 2002: 20-45.
    [13]
    李文厚, 庞军刚, 曹红霞, 等. 鄂尔多斯盆地晚三叠世延长期沉积体系及岩相古地理演化[J]. 西北大学学报(自然科学版), 2009, 39(3): 501-506.

    LI Wenhou, PANG Jungang, CAO Hongxia, et al. Depositional system and paleogeographic evolution of the Late Triassic Yanchang stage in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2009, 39(3): 501-506.
    [14]
    杨华, 窦伟坦, 刘显阳, 等. 鄂尔多斯盆地三叠系延长组长7沉积相分析[J]. 沉积学报, 2010, 28(2): 254-263.

    YANG Hua, DOU Weitan, LIU Xianyang, et al. Analysis on sedimentary facies of member 7 in Yanchang Formation of Triassic in Ordos Basin[J]. Acta Sedmentologica Sinica, 2010, 28(2): 254-263.
    [15]
    曹红霞. 鄂尔多斯盆地晚三叠世沉积中心迁移演化规律研究[D]. 西安: 西北大学, 2008.

    CAO Hongxia. Research on the rule of depocenter migration and evolution of Late Triassic in the Ordos Basin[D]. Xi'an: Northwest University, 2008.
    [16]
    CROSS T A, GARDNER M H. Base-level concepts and sequence stratigraphy[R]. Research Program in Finance Working Papers, 1991.
    [17]
    VAIL P R, MITCHUM R M JR, THOMPSON Ⅲ S. Seismic stratigraphy and global changes of sea level, Part 3: relative changes of sea level from coastal onlap[M]//PAYTON C E. Seismic stratigraphy: applications to hydrocarbon exploration. Tulsa: American Association of Petroleum Geologists, 1977: 63.
    [18]
    MILANKOVITCH M K. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem[J]. Royal Serbian Academy Special Publication, 1941, 133: 1-633.
    [19]
    HAYS J D, IMBRIE J, SHACKLETON N J. Variations in the Earth's Orbit: pacemaker of the ice ages[J]. Science, 1976, 194(4270): 1121-1132.
    [20]
    汪品先. 地质计时的天文"钟摆"[J]. 海洋地质与第四纪地质, 2006, 26(1): 1-7.

    WANG Pinxian. Astronomical "pendulum" for geological clock[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 1-7.
    [21]
    FISCHER A G, PREMOLI SILÜA I, DE BOER P L. Cyclostratigraphy[M]//GINSBURG R N, BEAUDOIN B. Cretaceous Resources, Events and Rhythms. Dordrecht: Springer, 1990: 139-172.
    [22]
    姚益民, 徐道一, 张海峰, 等. 山东东营凹陷新生代天文地层表简介[J]. 地层学杂志, 2007, 31(S2): 423-429.

    YAO Yimin, XU Daoyi, ZHANG Haifeng, et al. A brief introduction to the Cenozoic astrostratigraphic time scale for the Dongying Depression, Shandong[J]. Journal of Stratigraphy, 2007, 31(S2): 423-429.
    [23]
    陈留勤. 从准层序到米级旋回: 层序地层学与旋回地层学相互交融的纽带[J]. 地层学杂志, 2008, 32(4): 447-454.

    CHEN Liuqin. From parasequences to meter-scale cycles: the connection between sequence stratigraphy and cyclostratigraphy[J]. Journal of Stratigraphy, 2008, 32(4): 447-454.
    [24]
    闫建平, 言语, 彭军, 等. 湖相泥页岩天文地层旋回测井识别在沾化凹陷沙三下亚段的应用[J]. 测井技术, 2017, 41(6): 701-707.

    YAN Jianping, YAN Yu, PENG Jun, et al. Log identification of astronomical cycle in lacustrine facies mud shale and its application in the lower 3rd member of Shahejie Formation in Zhanhua Sag[J]. Well Logging Technology, 2017, 41(6): 701-707.
    [25]
    吴怀春, 房强. 旋回地层学和天文时间带[J]. 地层学杂志, 2020, 44(3): 227-238.

    WU Huaichun, FANG Qiang. Cyclostratigraphy and astrochronozones[J]. Journal of Stratigraphy, 2020, 44(3): 227-238.
    [26]
    LI Mingsong, HUANG Chunju, HINNOV L, et al. Astrochronology of the Anisian stage (Middle Triassic) at the Guandao reference section, South China[J]. Earth and Planetary Science Letters, 2018, 482: 591-606.
    [27]
    黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66.

    HUANG Chunju. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66.
    [28]
    田军, 吴怀春, 黄春菊, 等. 从405万年长偏心率周期看米兰科维奇理论[J]. 地球科学, 2022, 47(10): 3543-3568.

    TIAN Jun, WU Huaichun, HUANG Chunju, et al. Revisiting the Milankovitch theory from the perspective of the 405 ka long eccentricity cycle[J]. Earth Science, 2022, 47(10): 3543-3568.
    [29]
    WU Huaichun, ZHANG Shihong, SUI Suwen, et al. Recognition of Milankovitch cycles in the natural gamma-ray logging of Upper Cretaceous terrestrial strata in the Songliao Basin[J]. Acta Geologica Sinica-English Edition, 2007, 81(6): 996-1001.
    [30]
    王起琮. 天文周期与地层基准面旋回及其识别技术[J]. 西南石油大学学报(自然科学版), 2009, 31(4): 24-30.

    WANG Qicong. Astronomical periods and stratigraphic base-level cycles and its identification technology[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(4): 24-30.
    [31]
    李志明, 陶国亮, 黎茂稳, 等. 鄂尔多斯盆地西南部彬长区块三叠系延长组7段3亚段页岩油勘探前景探讨[J]. 石油与天然气地质, 2019, 40(3): 558-570.

    LI Zhiming, TAO Guoliang, LI Maowen, et al. Discussion on prospecting potential of shale oil in the 3rd sub-member of the Triassic Chang 7 member in Binchang block, southwestern Ordos Basin[J]. Oil & Gas Geology, 2019, 40(3): 558-570.
    [32]
    吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学(中国地质大学学报), 2011, 36(3): 409-428.

    WU Huaichun, ZHANG Shihong, FENG Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science(Journal of China University of Geosciences), 2011, 36(3): 409-428.
    [33]
    谢灏辰. 鄂尔多斯盆地南部延长组高分辨率层序地层格架研究[D]. 北京: 中国地质大学(北京), 2014.

    XIE Haochen. Study on high-resolution stratigraphy framework to Yanchang Formation of southern Ordos Basin[D]. Beijing: China University of Geosciences (Beijing), 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (192) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return