Volume 46 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
JIANG Longyan, QIAN Menhui, HE Faqi, QI Rong, YIN Chao, ZHANG Yi, ZHAN Xiaogang. Characteristics and main controlling factors of Chang 7 shale oil in Triassic Yanchang Formation, Fuxian area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 941-953. doi: 10.11781/sysydz202405941
Citation: JIANG Longyan, QIAN Menhui, HE Faqi, QI Rong, YIN Chao, ZHANG Yi, ZHAN Xiaogang. Characteristics and main controlling factors of Chang 7 shale oil in Triassic Yanchang Formation, Fuxian area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 941-953. doi: 10.11781/sysydz202405941

Characteristics and main controlling factors of Chang 7 shale oil in Triassic Yanchang Formation, Fuxian area, Ordos Basin

doi: 10.11781/sysydz202405941
  • Received Date: 2023-09-01
  • Rev Recd Date: 2024-08-28
  • Publish Date: 2024-09-28
  • The shale in the 7th member (Chang 7) of Triassic Yanchang Formation on the southeastern margin of the Ordos Basin is characterized by shallow burial depth, light oil quality, large variability in oil well production capacity, and significant resource potential. Identifying the main controlling factors of reservoir enrichment is key to efficient exploration. Based on analysis results of cast thin sections, physical properties, and scanning electron microscope (SEM) tests of the Chang 7 shale member in the Fuxian area, combined with core, well logging, and seismic data, its layer characteristics are described and the main controlling factors are discussed. The results show that the Chang 7 shale in the research area extensively develops gray, dark gray, and gray black source rocks. The lithology is mainly mudstone and mud shale, with organic matter types mainly classified as type Ⅰ-Ⅱ2. The vitrinite reflectance (Ro) values of source rocks range from 0.81% to 1.10%, indicating strong hydrocarbon generation potential. The sandstone reservoirs are mainly fine-grained feldspathic sandstone, with pore types primarily consisting of intragranular pores, residual intergranular pores, dissolution pores, and primary intergranular pores. Porosity ranges from 2.0% to 16.0%, and permeability ranges from 0.01×10-3 to 1.20×10-3 μm2, indicating tight reservoirs. The oil-bearing properties of the reservoir are impacted by the physical properties of the sandstone interlayers and proximity to faults: coarser-grained reservoirs with better physical properties exhibit better oil and gas bearing potential. Reservoir properties are controlled by two factors, sedimentary microfacies and diagenesis. Subaqueous distributary channel microfacies have the best properties, followed by mouth bar microfacies. Strong early diagenetic chlorite cementation and weak calcite cementation contribute to the formation of sweet spots in the physical properties. The development and nature of faults play a crucial role in the Chang 7 shale oil enrichment. Statistical analysis shows that it is difficult to obtain industrial oil flow when the fault displacement exceeds 10 m and the wellbore is within 1 km of the fault. However, when the fault displacement is less than 7 m or when the wellbore is more than 1 km away from a large fault, industrial oil flow is more easily obtained.

     

  • Authors QIAN Menhui and ZHANG Yi are the employees of the sponsor of this journal, and they did not take part in peer review or decision making of this article.
    The study was designed and the research method was determined by HE Faqi, QI Rong, and YIN Chao. JIANG Longyan, QIAN Menhui, ZHANG Yi, and ZHAN Xiaogang were responsible for project implementation. The manuscript was wrote by JIANG Longyan and revised by QIAN Menhui, ZHANG Yi, and ZHAN Xiaogang. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343-350.

    JIA Chengzao, ZOU Caineng, LI Jianzhong, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3): 343-350.
    [2]
    邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187.

    ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characte-ristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.
    [3]
    邹才能, 朱如凯, 白斌, 等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报, 2015, 34(1): 1-17.

    ZOU Caineng, ZHU Rukai, BAI Bin, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 1-17.
    [4]
    焦方正, 邹才能, 杨智. 陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发, 2020, 47(6): 1067-1078.

    JIAO Fangzheng, ZOU Caineng, YANG Zhi. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020, 47(6): 1067-1078.
    [5]
    付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883.

    FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883.
    [6]
    杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11.

    YANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11.
    [7]
    姚泾利, 赵彦德, 邓秀芹, 等. 鄂尔多斯盆地延长组致密油成藏控制因素[J]. 吉林大学学报(地球科学版), 2015, 45(4): 983-992.

    YAO Jingli, ZHAO Yande, DENG Xiuqin, et al. Controlling factors of tight oil reservoir in Triassic Yanchang Formation in Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(4): 983-992.
    [8]
    任战利, 李文厚, 梁宇, 等. 鄂尔多斯盆地东南部延长组致密油成藏条件及主控因素[J]. 石油与天然气地质, 2014, 35(2): 190-198.

    REN Zhanli, LI Wenhou, LIANG Yu, et al. Tight oil reservoir formation conditions and main controlling factors of Yanchang Formation in southeastern Ordos Basin[J]. Oil & Gas Geology, 2014, 35(2): 190-198.
    [9]
    屈童, 高岗, 梁晓伟, 等. 鄂尔多斯盆地长7段致密油成藏机理分析[J]. 地质学报, 2022, 96(2): 616-629

    QU Tong, GAO Gang, LIANG Xiaowei, et al. Analysis of tight oil accumulation mechanism of Chang 7 member in the Ordos Basin[J]. Acta Geologica Sinica, 2022, 96(2): 616-629.
    [10]
    付金华, 李士祥, 郭芪恒, 等. 鄂尔多斯盆地陆相页岩油富集条件及有利区优选[J]. 石油学报, 2022, 43(12): 1702-1716.

    FU Jinhua, LI Shixiang, GUO Qiheng, et al. Enrichment conditions and favorable area optimization of continental shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(12): 1702-1716.
    [11]
    肖文联, 任吉田, 王磊飞, 等. 鄂尔多斯盆地西233区长7页岩油注伴生气原油动用特征实验[J]. 油气地质与采收率, 2022, 29(5): 91-101.

    XIAO Wenlian, REN Jitian, WANG Leifei, et al. Experimental study on oil production characteristics in shale oil from Xi233 area Chang7 reservoir during injecting associated gas[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(5): 91-101.
    [12]
    马文忠, 王永宏, 张三, 等. 鄂尔多斯盆地陕北地区长7段页岩油储层微观特征及控制因素[J]. 天然气地球科学, 2021, 32(12): 1810-1821.

    MA Wenzhong, WANG Yonghong, ZHANG San, et al. Microscopic characteristics and controlling factors of Chang 7 member shale oil reservoir in northern Shaanxi area, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1810-1821.
    [13]
    付金华, 牛小兵, 淡卫东, 等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探, 2019, 24(5): 601-614.

    FU Jinhua, NIU Xiaobing, DAN Weidong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang 7 member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601-614.
    [14]
    付金华, 郭雯, 李士祥, 等. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力[J]. 天然气地球科学, 2021, 32(12): 1749-1761.

    FU Jinhua, GUO Wen, LI Shixiang, et al. Characteristics and exploration potential of multi-type shale oil in the 7th member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1749-1761.
    [15]
    肖正录, 李勇, 朱志勇, 等. 源储接触关系及其对近源致密油富集的影响: 以鄂尔多斯盆地陇东地区长81油藏为例[J]. 石油实验地质, 2022, 44(5): 825-834. doi: 10.11781/sysydz202205825

    XIAO Zhenglu, LI Yong, ZHU Zhiyong, et al. Influence of source-reservoir contact conditions on the enrichment of near-source tight oil: taking Chang 81 reservoir in the Longdong area of Ordos Basin as an example[J]. Petroleum Geology & Experiment. 2022, 44(5): 825-834. doi: 10.11781/sysydz202205825
    [16]
    马艳丽, 辛红刚, 马文忠, 等. 鄂尔多斯盆地陕北地区长7段页岩油富集主控因素及甜点区预测[J]. 天然气地球科学, 2021, 32(12): 1822-1829.

    MA Yanli, XIN Honggang, MA Wenzhong, et al. The main controlling factors on the enrichment and sweet-spot area prediction of Chang 7 member shale oil in northern Shaanxi area, Orods Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1822-1829.
    [17]
    徐田武, 张洪安, 李令喜, 等. 不同沉积环境下陆相页岩储集特征差异性对比: 以中原油田三大探区为例[J]. 断块油气田, 2023, 30(6): 895-904.

    XU Tianwu, ZHANG Hongan, LI Lingxi, et al. Comparative study on the differences in reservoir characteristics of continental shale under different sedimentary environments: taking the three major exploration areas of Zhongyuan Oilfield as an example[J]. Fault-Block Oil and Gas Field, 2023, 30(6): 895-904.
    [18]
    崔明明, 李进步, 李莹, 等. 鄂尔多斯盆地苏里格气田西南部致密储层非均质性特征及对成藏的制约[J]. 地质学报, 2024, 98(1): 214-230.

    CUI Mingming, LI Jinbu, LI Ying, et al. Heterogeneity characte-ristics and its constraints on accumulation of tight sandstone reservoirs in the southwestern Sulige gas field, Ordos Basin[J]. Acta Geologica Sinica, 2024, 98(1): 214-230.
    [19]
    曹江骏, 王茜, 王刘伟, 等. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.

    CAO Jiangjun, WANG Xi, WANG Liuwei, et al. Characteristics and main controlling factors of interbedded shale oil reservoirs of Triassic Chang 7 member in Heshui area, Ordos Basin[J]. Lithologic Reservoirs, 2024, 36(3): 158-171.
    [20]
    祝海华, 张秋霞, 董国栋, 等. 鄂尔多斯盆地长7段重力流砂岩长石溶蚀特征及控制因素[J]. 石油勘探与开发, 2024, 51(1): 102-113.

    ZHU Haihua, ZHANG Qiuxia, DONG Guodong, et al. Characte-ristics and control factors of feldspar dissolution in gravity flow sandstone of Chang 7 member, Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Deve-lopment, 2024, 51(1): 102-113.
    [21]
    杜威, 邱春光, 贾屾, 等. 基于主控因素分析的河控三角洲形态定量表征[J]. 油气地质与采收率, 2022, 29(5): 1-14.

    DU Wei, QIU Chunguang, JIA Shen, et al. Quantitative characterization of river-dominated deltaic morphology based on analysis of dominant controlling factors[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(5): 1-14.
    [22]
    李万安, 韩长城, 田继军, 等. 博格达山周缘二叠系芦草沟组沉积演化及其对储层的控制[J]. 断块油气田, 2023, 30(3): 415-423, 474.

    LI Wanan, HAN Changcheng, TIAN Jijun, et al. Sedimentary evolution of Permian Lucaogou Formation around Bogda Mountains and its control on reservoirs[J]. Fault-Block Oil and Gas Field, 2023, 30(3): 415-423, 474.
    [23]
    王桂成, 马维民, 赵虹, 等. 鄂尔多斯盆地富县探区三叠系延长组沉积特征[J]. 西北大学学报(自然科学版), 2003, 33(5): 608-612.

    WANG Guicheng, MA Weimin, ZHAO Hong, et al. Depositional feature of Tertiary Yanchang Formation of Fuxian exploratory area in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2003, 33(5): 608-612.
    [24]
    刘志华, 邓昆, 乐锦波, 等. 鄂尔多斯盆地富县地区深湖浊积沉积特征[J]. 石油天然气学报, 2010, 32(6): 186-189.

    LIU Zhihua, DENG Kun, LE Jinbo, et al. Sedimentary characte-ristics of turbidite fans in Fuxian region of Ordos Basin[J]. Journal of Oil and Gas Technology, 2010, 32(6): 186-189.
    [25]
    卢晨刚, 张遂安, 毛潇潇, 等. 致密砂岩微观孔隙非均质性定量表征及储层意义: 以鄂尔多斯盆地X地区山西组为例[J]. 石油实验地质, 2017, 39(4): 556-561. doi: 10.11781/sysydz201704556

    LU Chengang, ZHANG Suian, MAO Xiaoxiao, et al. Quantitative characterization of microscopic pore heterogeneity in tight sandstones and its reservoir significance: a case study of the Shanxi Formation in X area, Ordos Basin[J]. Petroleum Geology & Experiment, 2017, 39(4): 556-561. doi: 10.11781/sysydz201704556
    [26]
    杜贵超, 杨兆林, 尹洪荣, 等. 鄂尔多斯盆地东南部长73段泥页岩储层有机质发育特征及富集模式[J]. 油气地质与采收率, 2022, 29(6): 1-11.

    DU Guichao, YANG Zhaolin, YIN Hongrong, et al. Developmental characteristics of organic matter and its enrichment model in shale reservoirs of Chang73 Member in Yanchang Formation of southeast Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6): 1-11.
    [27]
    DU Shuheng, PANG Shan, SHI Yongmin. Quantitative characte-rization on the microscopic pore heterogeneity of tight oil sandstone reservoir by considering both the resolution and representativeness[J]. Journal of Petroleum Science and Engineering, 2018, 169: 388-392.
    [28]
    GIER S, WORDEN R H, JOHNS W D, et al. Diagenesis and reservoir quality of Miocene sandstones in the Vienna Basin, Austria[J]. Marine and Petroleum Geology, 2008, 25(8): 681-695.
    [29]
    李士春, 冯朝荣, 殷世江. 鄂尔多斯盆地南部中生界延长组沉积体系与油气富集[J]. 岩性油气藏, 2010, 22(2): 79-83.

    LI Shichun, FENG Chaorong, YIN Shijiang. Sedimentary system and hydrocarbon enrichment of Yanchang Formation in southern Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(2): 79-83.
    [30]
    李昱霏. 鄂尔多斯盆地延长组长7—长6段沉积古地理研究[D]. 北京: 中国地质大学(北京), 2015.

    LI Yufei. Paleogeography research of the Ordos Basin in Chang 7 and Chang 6 formation[D]. Beijing: China University of Geosciences (Beijing), 2015.
    [31]
    郭轩豪, 谭成仟, 赵军辉, 等. 成岩作用对致密砂岩储层微观结构的影响差异: 以鄂尔多斯盆地姬塬和镇北地区长7段为例[J]. 天然气地球科学, 2021, 32(6): 826-835.

    GUO Xuanhao, TAN Chengqian, ZHAO Junhui, et al. Different influence of diagenesis on micro pore-throat characteristics of tight sandstone reservoirs: case study of the Triassic Chang 7 member in Jiyuan and Zhenbei areas, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(6): 826-835.
    [32]
    曹江骏, 陈朝兵, 程皇辉, 等. 成岩作用对深水致密砂岩储层微观非均质性的影响: 以鄂尔多斯盆地合水地区长7油层组为例[J]. 沉积学报, 2021, 39(4): 1031-1046.

    CAO Jiangjun, CHEN Chaobing, CHENG Huanghui, et al. Effect of diagenesis on microheterogeneity of deepwater tight sandstone reservoirs: a case study from the Triassic Chang 7 oilbearing formation in Heshui area, Ordos Basin, NW China[J]. Acta Sedimen-tologica Sinica, 2021, 39(4): 1031-1046.
    [33]
    QIAO Juncheng, ZENG Jianhui, JIANG Shu, et al. Impacts of sedimentology and diagenesis on pore structure and reservoir quality in tight oil sandstone reservoirs: implications for macroscopic and microscopic heterogeneities[J]. Marine and Petroleum Geology, 2020, 111: 279-300.
    [34]
    谢启超, 冯波, 宋鹏, 等. 合水地区长7致密砂岩储层微观孔喉结构分形特征[J]. 断块油气田, 2019, 26(2): 215-219.

    XIE Qichao, FENG Bo, SONG Peng, et al. Fractal characteristics of microscopic pore-throat structures of Chang 7 tight sandstone reservoirs, Heshui area, Ordos Basin[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 215-219.
    [35]
    WANG Ai, ZHONG Dakang, ZHU Haihua, et al. Diagentic features of illite in Upper Triassic Chang-7 tight oil sandstones, Ordos Basin[J]. Geosciences Journal, 2019, 23(2): 281-298.
    [36]
    王新民, 郭彦如, 付金华, 等. 鄂尔多斯盆地延长组长8段相对高孔渗砂岩储集层的控制因素分析[J]. 石油勘探与开发, 2005, 32(2): 35-38.

    WANG Ximin, GUO Yanru, FU Jinhua, et al. Control factors for forming higher porosity and permeability sandstone reservoirs in the Chang 8 member of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2005, 32(2): 35-38.
    [37]
    周晓峰, 王建国, 兰朝利, 等. 鄂尔多斯盆地延长组绿泥石膜的形成机制[J]. 中国石油大学学报(自然科学版), 2016, 40(4): 20-28.

    ZHOU Xiaofeng, WANG Jianguo, LAN Chaoli, et al. Forming mechanisms of chlorite films in Yanchang Formation, Ordos Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(4): 20-28.
    [38]
    郭惠, 赵红格, 李莹, 等. 鄂尔多斯盆地西部古峰庄地区三叠系延长组长7—长9段裂缝特征及油气意义[J]. 石油实验地质, 2023, 45(1): 109-121. doi: 10.11781/sysydz202301109

    GUO Hui, ZHAO Hongge, LI Ying, et al. Fracture characteristics and hydrocarbon significance in the Chang 7 to Chang 9 members of Triassic Yanchang Formation of Gufengzhuang area, western Ordos Basin[J]. Petroleum Geology & Experiment, 2023, 45(1): 109-121. doi: 10.11781/sysydz202301109
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (194) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return