Volume 46 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
LI Zhiming, LIU Huimin, LIU Peng, QIAN Menhui, CAO Tingting, DU Zhenjing, LI Zheng, BAO Youshu, JIANG Qigui, XU Ershe, SUN Zhongliang, LIU Yahui. Characteristics and geological significance of escaping gas rich in natural hydrogen from pilot well BYP5 cores of lower sub-member of third member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 979-988. doi: 10.11781/sysydz202405979
Citation: LI Zhiming, LIU Huimin, LIU Peng, QIAN Menhui, CAO Tingting, DU Zhenjing, LI Zheng, BAO Youshu, JIANG Qigui, XU Ershe, SUN Zhongliang, LIU Yahui. Characteristics and geological significance of escaping gas rich in natural hydrogen from pilot well BYP5 cores of lower sub-member of third member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 979-988. doi: 10.11781/sysydz202405979

Characteristics and geological significance of escaping gas rich in natural hydrogen from pilot well BYP5 cores of lower sub-member of third member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin

doi: 10.11781/sysydz202405979
  • Received Date: 2024-05-14
  • Rev Recd Date: 2024-07-06
  • Publish Date: 2024-09-28
  • The pilot well BYP5 is a cored well drilled to explore the oil and gas bearing properties of the highly thermally evolved lower sub-member of the third member of the Paleogene Shahejie Formation in the Bonan deep sag of the Zhanhua Sag, Bohai Bay Basin. The coring interval depth ranges from 4 267.0 to 4 338.1 m. To reveal the oil and gas bearing properties of the cored interval, pyrolysis of frozen, sealed fragments was conducted on typical samples and the escaping gas from the core was collected and quantified for composition analysis. The results show that the cored interval is a high-quality hydrocarbon source rock rich in organic matter and carbonates, with a maturity (Ro) of about 1.2%. Efficient hydrocarbon generation and expulsion likely occurred during thermal evolution, causing the current low free hydrocarbon (S1) and hydrogen index (IH) values. The content of the hydrocarbon gas from the core was generally low, ranging from 0.001 to 0.01 cm3/g, with an average of 0.005 cm3/g. Segments with relatively high levels of escaping hydrocarbon gas corresponded to those with relatively high pyrolysis S1 values. The escaping gas was mainly composed of CH4, CO2, H2, and C2H6, with mole percentages of H2 ranging from 1.08% to 19.23%, with an average of 7.09%, indicating hydrogen-rich characteristics. H2 showed a significant positive correlation with CO2 and a negative correlation with CH4. The escaping gas from the core was likely trapped in-situ, and the formation of H2 might be related to the cleavage of hetero-bonds and demethylation during the pyrolysis of organic matter. Further research is suggested on the formation mechanism, geological exploration, and evaluation of natural hydrogen released during organic matter pyrolysis, so as to provide a basis for the decision-making in the exploration and development of this type of natural hydrogen resource.

     

  • Author LI Zhiming is an Editorial Board Member and an employee of the sponsor of this journal. LIU Huimin is an Editorial Board Member of this journal. They did not take part in peer review or decision making of this article.
    LI Zhiming and LIU Huimin drafted and revised the manuscript. LIU Peng, QIAN Menhui, and CAO Tingting participated in sample analysis and data collection. DU Zhenjing, LI Zheng, BAO Youshu, and JIANG Qigui participated in drafting parts of the manuscript. XU Ershe, SUN Zhongliang, and LIU Yahui drew the diagrams. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    田黔宁, 付刚, 刘延明, 等. 天然氢: 不可忽视的无碳新型能源宝藏[J]. 自然资源科普与文化, 2024(1): 4-11.

    TIAN Qianning, FU Gang, LIU Yanming, et al. Natural hydrogen: non-negligible new carbon-free energy treasures[J]. Natural Resources Popular Science & Culture, 2024(1): 4-11.
    [2]
    田黔宁, 张炜, 王海华, 等. 能源转型背景下不可忽视的新能源: 天然氢[J]. 中国地质调查, 2022, 9(1): 1-15.

    TIAN Qianning, ZHANG Wei, WANG Haihua, et al. Non-negligible new energy in the energy transition context: natural hydrogen[J]. Geological Survey of China, 2022, 9(1): 1-15.
    [3]
    魏琪钊, 朱如凯, 杨智, 等. 天然氢气藏地质特征、形成分布与资源前景[J]. 天然气地球科学, 2024, 35(6): 1113-1122.

    WEI Qizhao, ZHU Rukai, YANG Zhi, et al. Geological characteristics, formation distribution and resource prospects of natural hydrogen reservoir[J]. Natural Gas Geoscience, 2024, 35(6): 1113-1122.
    [4]
    SMITH N J P. It's time for explorationists to take hydrogen more seriously[J]. First Break, 2002, 20(4): 246-253.
    [5]
    NIVIN V A. Free hydrogen-hydrocarbon gases from the Lovozero loparite deposit (Kola Peninsula, NW Russia)[J]. Applied Geochemistry, 2016, 74: 44-55. doi: 10.1016/j.apgeochem.2016.09.003
    [6]
    PRINZHOFER A, CISSÉ C S T, DIALLO A B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19315- 19326. doi: 10.1016/j.ijhydene.2018.08.193
    [7]
    王林. "天然氢"悄然走红全球[N]. 中国能源报, 2023-11-20(05).

    WANG Lin. "Natural hydrogen" is quietly becoming a global phenomenon[N]. China Energy News, 2023-11-20(05).
    [8]
    苏宇通, 金之钧, 刘润超, 等. 非洲马里气田天然氢气勘探案例介绍及全球天然氢气勘探进展[J/OL]. 石油与天然气地质. (2024-03-05). https://link.cnki.net/urlid/11.4820.TE.20240301.1546.002.

    SU Yutong, JIN Zhijun, LIU Runchao, et al. Natural hydrogen exploration: a case from Mali gas field in Africa and global progress[J/OL]. Oil & Gas Geology. (2024-03-05). https://link.cnki.net/urlid/11.4820.TE.20240301.1546.002.
    [9]
    万燕鸣. 全球天然氢的勘探、应用与发展[J]. 中国能源, 2020, 42(9): 33-37. doi: 10.3969/j.issn.1003-2355.2020.09.007

    WAN Yanming. Global exploration, application and prospect of natural hydrogen[J]. Energy of China, 2020, 42(9): 33-37. doi: 10.3969/j.issn.1003-2355.2020.09.007
    [10]
    ZGONNIK V. The occurrence and geoscience of natural hydrogen: a comprehensive review[J]. Earth-Science Reviews, 2020, 203: 103140. doi: 10.1016/j.earscirev.2020.103140
    [11]
    韩双彪, 唐致远, 杨春龙, 等. 天然气中氢气成因及能源意义[J]. 天然气地球科学, 2021, 32(9): 1270-1284.

    HAN Shuangbiao, TANG Zhiyuan, YANG Chunlong, et al. Genesis and energy significance of hydrogen in natural gas[J]. Natural Gas Geoscience, 2021, 32(9): 1270-1284.
    [12]
    窦立荣, 刘化清, 李博, 等. 全球天然氢气勘探开发利用进展及中国的勘探前景[J]. 岩性油气藏, 2024, 36(2): 1-14.

    DOU Lirong, LIU Huaqing, LI Bo, et al. Global natural hydrogen exploration and development situation and prospects in China[J]. Lithologic Reservoirs, 2024, 36(2): 1-14.
    [13]
    HAN Shuangbiao, TANG Zhiyuan, WANG Chengshan, et al. Hydrogen-rich gas discovery in continental scientific drilling project of Songliao Basin, Northeast China: new insights into deep earth exploration[J]. Science Bulletin, 2022, 67(10): 1003-1006. doi: 10.1016/j.scib.2022.02.008
    [14]
    孟庆强. 地质体中天然氢气成因识别方法初探[J]. 石油实验地质, 2022, 44(3): 552-558. doi: 10.11781/sysydz202203552

    MENG Qingqiang. Identification method for the origin of natural hydrogen gas in geological bodies[J]. Petroleum Geology & Experiment, 2022, 44(3): 552-558. doi: 10.11781/sysydz202203552
    [15]
    VACQUAND C, DEVILLE E, BEAUMONT V, et al. Reduced gas seepages in ophiolitic complexes: evidences for multiple origins of the H2-CH4-N2 gas mixtures[J]. Geochimica et Cosmochimica Acta, 2018, 223: 437-461. doi: 10.1016/j.gca.2017.12.018
    [16]
    WORMAN S L, PRATSON L F, KARSON J A, et al. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere[J]. Geophysical Research Letters, 2016, 43(12): 6435-6443. doi: 10.1002/2016GL069066
    [17]
    黄瑞芳, 孙卫东, 丁兴, 等. 橄榄岩蛇纹石化过程中氢气和烷烃的形成[J]. 岩石学报, 2015, 31(7): 1901-1907.

    HUANG Ruifang, SUN Weidong, DING Xing, et al. Formation of hydrogen gas and alkane during peridotite serpentinization[J]. Acta Petrologica Sinica, 2015, 31(7): 1901-1907.
    [18]
    MCCOLLOM T M, BACH W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks[J]. Geochimica et Cosmochimica Acta, 2009, 73(3): 856-875. doi: 10.1016/j.gca.2008.10.032
    [19]
    MURRAY J, CLÉMENT A, FRITZ B, et al. Abiotic hydrogen generation from biotite-rich granite: a case study of the Soultz-sous-Forets geothermal site, France[J]. Applied Geochemistry, 2020, 119: 104631. doi: 10.1016/j.apgeochem.2020.104631
    [20]
    DONZÉ F V, TRUCHE L, NAMIN P S, et al. Migration of natural hydrogen from deep-seated sources in the Sao Francisco Basin, Brazil[J]. Geosciences, 2020, 10(9): 364. doi: 10.3390/geosciences10090364
    [21]
    WANG W Q, LIU C Y, ZHANG D D, et al. Radioactive genesis of hydrogen gas under geological conditions: an experimental study[J]. Acta Geologica Sinica: English Edition, 2019, 93(4): 1125-1134. doi: 10.1111/1755-6724.14298
    [22]
    NANDI R, SENGUPTA S. Microbial production of hydrogen: an overview[J]. Critical Reviews in Microbiology, 1998, 24(1): 61-84. doi: 10.1080/10408419891294181
    [23]
    HALLENBECK P C, BENEMANN J R. Biological hydrogen production; fundamentals and limiting processes[J]. International Journal of Hydrogen Energy, 2002, 27(11/12): 1185-1193.
    [24]
    樊耀亭, 李晨林, 侯红卫, 等. 天然厌氧微生物氢发酵生产生物氢气的研究[J]. 中国环境科学, 2002, 22(4): 370-374. doi: 10.3321/j.issn:1000-6923.2002.04.020

    FAN Yaoting, LI Chenlin, HOU Hongwei, et al. Studies on biohydrogen production by biohydrogen fermentation of natural anaerobic microorganism[J]. China Environmental Science, 2002, 22(4): 370-374. doi: 10.3321/j.issn:1000-6923.2002.04.020
    [25]
    HANSON J, HANSON H. Hydrogen's organic genesis[J]. Unconventional Resources, 2024, 4: 100057. doi: 10.1016/j.uncres.2023.07.003
    [26]
    BOREHAM C J, EDWARDS D S, CZADO K, et al. Hydrogen in Australian natural gas: occurrences, sources and resources[J]. The APPEA Journal, 2021, 61(1): 163-191. doi: 10.1071/AJ20044
    [27]
    LI Xiaoqiang, KROOSS B M, WENIGER P, et al. Liberation of mole-cular hydrogen (H2) and methane (CH4) during non-isothermal pyrolysis of shales and coals: systematics and quantification[J]. International Journal of Coal Geology, 2015, 137: 152-164. doi: 10.1016/j.coal.2014.11.011
    [28]
    LI Xiaoqiang, KROOSS B M, WENIGER P, et al. Molecular hydrogen (H2) and light hydrocarbon gases generation from marine and lacustrine source rocks during closed-system laboratory pyrolysis experiments[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 275-287. doi: 10.1016/j.jaap.2017.05.019
    [29]
    SUZUKI N, SAITO H, HOSHINO T. Hydrogen gas of organic origin in shales and metapelites[J]. International Journal of Coal Geo-logy, 2017, 173: 227-236. doi: 10.1016/j.coal.2017.02.014
    [30]
    WANG Lu, JIN Zhijun, LIU Quanyou, et al. The occurrence pattern of natural hydrogen in the Songliao Basin, P.R. China: insights on natural hydrogen exploration[J]. International Journal of Hydrogen Energy, 2024, 50: 261-275.
    [31]
    金之钧, 杨雷, 曾溅辉, 等. 东营凹陷深部流体活动及其生烃效应初探[J]. 石油勘探与开发, 2002, 29(2): 42-44. doi: 10.3321/j.issn:1000-0747.2002.02.010

    JIN Zhijun, YANG Lei, ZENG Jianhui, et al. Deep fluid activities and their effects on generation of hydrocarbon in Dongying Depression[J]. Petroleum Exploration and Development, 2002, 29(2): 42-44. doi: 10.3321/j.issn:1000-0747.2002.02.010
    [32]
    LIU Quanyou, ZHU Dongya, JIN Zhijun, et al. Effects of deep CO2 on petroleum and thermal alteration: the case of the Huangqiao oil and gas field[J]. Chemical Geology, 2017, 469: 214-229. doi: 10.1016/j.chemgeo.2017.06.031
    [33]
    刘培, 蒋有录, 刘华, 等. 渤海湾盆地沾化凹陷断层活动与新近系油气成藏关系[J]. 天然气地球科学, 2013, 24(3): 541-547.

    LIU Pei, JIANG Youlu, LIU Hua, et al. The relationship between fault-activity and hydrocarbon accumulation of Neogene in Zhanhua Depression, Bohai Bay Basin[J]. Natural Gas Geoscience, 2013, 24(3): 541-547.
    [34]
    张凡芹, 王伟锋, 戴俊生. 沾化凹陷断层活动性及其对层序发育的控制作用[J]. 石油与天然气地质, 2003, 24(3): 253-259. doi: 10.3321/j.issn:0253-9985.2003.03.013

    ZHANG Fanqin, WANG Weifeng, DAI Junsheng. Fault activities and their controls on the development of lithologic sequences in Zhanhua Sag[J]. Oil & Gas Geology, 2003, 24(3): 253-259. doi: 10.3321/j.issn:0253-9985.2003.03.013
    [35]
    张学才, 刘华, 张芷晴, 等. 济阳坳陷埕岛东部地区断层特征及其与新近系油气富集关系[J]. 油气地质与采收率, 2022, 29(3): 1-10.

    ZHANG Xuecai, LIU Hua, ZHANG Zhiqing, et al. Fault characteristics and their relationships with hydrocarbon accumulation in Neogene in eastern Chengdao area, Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 1-10.
    [36]
    池英柳, 杨池银, 周建生. 渤海湾盆地新生代断裂活动与含油气系统形成[J]. 勘探家, 2000, 5(3): 41-48.

    CHI Yingliu, YANG Chiyin, ZHOU Jiansheng. Cenozoic faulting and its influence on the formation of petroleum systems in Bohai Bay Basin[J]. Petroleum Explorationist, 2000, 5(3): 41-48.
    [37]
    李志明, 张鑫璐, 蒋宏, 等. 渤海湾盆地沾化凹陷罗63井沙一段碎裂岩方解石胶结物中流体包裹体特征[J]. 矿物岩石地球化学通报, 2018, 37(3): 513-522.

    LI Zhiming, ZHANG Xinlu, JIANG Hong, et al. Characteristics of fluid inclusion in calcite cement of cataclasite from the first sub-member of the Shahejie Formation of well Luo 63, Zhanhua Depression, Bohai Bay Basin[J]. Bulletin of Mineralogy, Petro-logy and Geochemistry, 2018, 37(3): 513-522.
    [38]
    刘惠民, 李政, 包友书, 等. 渤海湾盆地济阳坳陷高产页岩油井BYP5页岩地质特征[J]. 石油与天然气地质, 2023, 44(6): 1405-1417.

    LIU Huimin, LI Zheng, BAO Youshu, et al. Geology of shales in prolific shale-oil well BYP5 in the Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2023, 44(6): 1405-1417.
    [39]
    蒋云箭, 刘惠民, 柴春艳, 等. 济阳坳陷页岩油测井评价[J]. 油气地质与采收率, 2023, 30(1): 21-34.

    JIANG Yunjian, LIU Huimin, CHAI Chunyan, et al. Logging evaluation of shale oil in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 21-34.
    [40]
    李志明, 刘雅慧, 何晋译, 等. 陆相页岩油"甜点"段评价关键参数界限探讨[J]. 石油与天然气地质, 2023, 44(6): 1453-1467.

    LI Zhiming, LIU Yahui, HE Jinyi, et al. Limits of critical parameters for sweet-spot interval evaluation of lacustrine shale oil[J]. Oil & Gas Geology, 2023, 44(6): 1453-1467.
    [41]
    包友书, 张林晔, 张金功, 等. 渤海湾盆地东营凹陷古近系页岩油可动性影响因素[J]. 石油与天然气地质, 2016, 37(3): 408-414.

    BAO Youshu, ZHANG Linye, ZHANG Jingong, et al. Factors influencing mobility of Paleogene shale oil in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(3): 408-414.
    [42]
    鲍云杰, 李志明, 黎茂稳, 等. 岩心分段密封及逸散轻烃采集测定技术与初步应用[J]. 石油实验地质, 2020, 42(3): 422-427. doi: 10.11781/sysydz202003422

    BAO Yunjie, LI Zhiming, LI Maowen, et al. Segmented sealing of cores and collection and test of escaped light hydrocarbons and its preliminary application[J]. Petroleum Geology & Experiment, 2020, 42(3): 422-427. doi: 10.11781/sysydz202003422
    [43]
    贾梦瑶, 鲍云杰, 李志明, 等. 陆相页岩层系岩心中气态烃井场测定技术初步应用及展望[J]. 石油实验地质, 2024, 46(1): 183-190. doi: 10.11781/sysydz202401183

    JIA Mengyao, BAO Yunjie, LI Zhiming, et al. Preliminary application and prospect of well site determination technology of gaseous hydrocarbon in continental shale cores[J]. Petroleum Geology & Experiment, 2024, 46(1): 183-190. doi: 10.11781/sysydz202401183
    [44]
    贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48(3): 437-452.

    JIA Chengzao, PANG Xiongqi, SONG Yan. The mechanism of unconventional hydrocarbon formation: hydrocarbon self-containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48(3): 437-452.
    [45]
    ALLARA D L, SHAW R. A compilation of kinetic parameters for the thermal degradation of n-alkane molecules[J]. Journal of Physical and Chemical Reference Data, 1980, 9(3): 523-560. doi: 10.1063/1.555623
    [46]
    TISSOT B, CALIFET-DEBYSER Y, DEROO G, et al. Origin and evolution of hydrocarbons in early Toarcian shales, Paris Basin, France[J]. AAPG Bulletin, 1971, 55(12): 2177-2193.
    [47]
    LORANT F, BEHAR F. Late generation of methane from mature kerogens[J]. Energy Fuels, 2002, 16(2): 412-427. doi: 10.1021/ef010126x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (304) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return