Volume 47 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
CHEN Yue, LEI Qiqi, MA Dongmin, WANG Xin, WANG Xinggang, HUANG Diefang, RONG Gaoxiang. Combined multi-scale characterization of pores in ultra-thick coal seams of Jurassic Xishanyao Formation, Tiaohu-Malang sags, Santanghu Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 104-116. doi: 10.11781/sysydz2025010104
Citation: CHEN Yue, LEI Qiqi, MA Dongmin, WANG Xin, WANG Xinggang, HUANG Diefang, RONG Gaoxiang. Combined multi-scale characterization of pores in ultra-thick coal seams of Jurassic Xishanyao Formation, Tiaohu-Malang sags, Santanghu Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 104-116. doi: 10.11781/sysydz2025010104

Combined multi-scale characterization of pores in ultra-thick coal seams of Jurassic Xishanyao Formation, Tiaohu-Malang sags, Santanghu Basin

doi: 10.11781/sysydz2025010104
  • Received Date: 2024-08-15
  • Rev Recd Date: 2024-12-05
  • Available Online: 2025-01-24
  • The ultra-thick coal seams in the middle and lower parts of the Jurassic Xishanyao Formation in the Santanghu Basin are widely distributed. However, research on the pore characteristics of these ultra-thick coal seams is limited. To accurately characterize the porosity features of these coal reservoirs in the Tiaohu-Malang sags of the Santanghu Basin, the study examined the 9-1 and 9-2 coal samples of the Xishanyao Formation. Techniques such as high-pressure mercury intrusion porosimetry, low-temperature liquid nitrogen adsorption, nuclear magnetic resonance (NMR), CT scanning, scanning electron microscopy (SEM), and the pore-crack analysis system (PCAS) were used to investigate pore development characteristics. The results show significant differences in surface morphology between the two coal seam samples. The surface of the 9-1 coal sample contains a large number of mineral crystal particles, with well-developed pores, breccia pores, friction holes, and micro-fractures, displaying a distinct pore-fracture topological structure. The 9-2 coal sample exhibits prominent primary fibrous structures, with smaller and more dispersed fractures. The fractal characteristics of the pore structures also differ significantly between the two coal seams, with the 9-1 coal sample showing stronger heterogeneity. Its liquid nitrogen adsorption curves correspond to type Ⅱ with a H4 hysteresis loop. For the 9-2 coal sample, the fractal dimensions of micropores and small pores are 2.53 and 2.63, respectively, indicating higher complexity and better permeability connectivity. Multifractal characteristics analysis shows that pores of small diameters exhibit a more concentrated distribution and a narrower range, with stronger heterogeneity. The pore distribution of 9-1 coal sample is more concentrated, with a relatively more uniform pore size distribution intervals. Using a combined full-scale characterization method, it is revealed that 9-2 coal sample has a higher total pore volume than 9-1. Macropores have the largest volume proportion, accounting for 47.97% and 44.48%, respectively, followed by mesopores and small pores, and the proportion of micropores is the smallest. Micropores contribute the most to the pore specific surface areas for both seams, which are 62.67% and 58.43%, respectively. For the 9-1 coal sample, the pore volume contribution positively correlates with pore size, while the specific surface area contribution negatively correlates with pore size.

     

  • loading
  • [1]
    徐凤银, 肖芝华, 陈东, 等.我国煤层气开发技术现状与发展方向[J].煤炭科学技术, 2019, 47(10):205-215.

    XU Fengyin, XIAO Zhihua, CHEN Dong, et al.Current status and development direction of coalbed methane exploration technology in China[J].Coal Science and Technology, 2019, 47(10):205-215.
    [2]
    陶树, 汤达祯, 许浩, 等.沁南煤层气井产能影响因素分析及开发建议[J].煤炭学报, 2011, 36(2):194-198.

    TAO Shu, TANG Dazhen, XU Hao, et al.Analysis on influence factors of coalbed methane wells productivity and development proposals in southern Qinshui Basin[J].Journal of China Coal Society, 2011, 36(2):194-198.
    [3]
    李勇, 徐立富, 刘宇, 等.深部煤层气水赋存机制、环境及动态演化[J].煤田地质与勘探, 2024, 52(2):40-51.

    LI Yong, XU Lifu, LIU Yu, et al.Occurrence mechanism, environment and dynamic evolution of gas and water in deep coal seams[J].Coal Geology & Exploration, 2024, 52(2):40-51.
    [4]
    陈跃, 汤达祯, 许浩, 等.基于测井信息的韩城地区煤体结构的分布规律[J].煤炭学报, 2013, 38(8):1435-1442.

    CHEN Yue, TANG Dazhen, XU Hao, et al.The distribution of coal structure in Hancheng based on well logging data[J].Journal of China Coal Society, 2013, 38(8):1435-1442.
    [5]
    姚艳斌, 刘大锰.基于核磁共振弛豫谱的煤储层岩石物理与流体表征[J].煤炭科学技术, 2016, 44(6):14-22.

    YAO Yanbin, LIU Dameng.Petrophysics and fluid properties characterizations of coalbed methane reservoir by using NMR relaxation time analysis[J].Coal Science and Technology, 2016, 44(6):14-22.
    [6]
    姚艳斌, 刘大锰, 蔡益栋, 等.基于NMR和X-CT的煤的孔裂隙精细定量表征[J].中国科学(地球科学), 2010, 40(11):1598-1607. YAO Yanbin, LIU Dameng, CAI Yidong, et al.Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography[J]. Science China(Earth Sciences), 2010, 53(6):854-862.
    [7]
    付裕, 陈新, 冯中亮.基于CT扫描的煤岩裂隙特征及其对破坏形态的影响[J].煤炭学报, 2020, 45(2):568-578.

    FU Yu, CHEN Xin, FENG Zhongliang.Characteristics of coal-rock fractures based on CT scanning and its influence on failure modes[J].Journal of China Coal Society, 2020, 45(2):568-578.
    [8]
    翟成, 孙勇, 范宜仁, 等.低场核磁共振技术在煤孔隙结构精准表征中的应用与展望[J].煤炭学报, 2022, 47(2):828-848.

    ZHAI Cheng, SUN Yong, FAN Yiren, et al.Application and prospect of low-field nuclear magnetic resonance technology in accurate characterization of coal pore structure[J].Journal of China Coal Society, 2022, 47(2):828-848.
    [9]
    YAO Yanbin, LIU Dameng.Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J].Fuel, 2012, 95:152-158.
    [10]
    楚亚培.液氮冻融煤体孔隙裂隙结构损伤演化规律及增渗机制研究[D].重庆:重庆大学, 2020. CHU Yapei.Study on the damage evolution law of pore and fracture structure of coal under liquid nitrogen freeze-thaw and the mechanism of permeability enhancing[D].Chongqing:Chongqing University, 2020.
    [11]
    降文萍, 宋孝忠, 钟玲文.基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J].煤炭学报, 2011, 36(4):609-614.

    JIANG Wenping, SONG Xiaozhong, ZHONG Lingwen.Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method[J].Journal of China Coal Society, 2011, 36(4):609-614.
    [12]
    DONG Kai, ZHONG Dongliang, LU Yiyu, et al.Facilitating desorption and diffusion of coalbed methane by wetting-corrosion:perspectives from the change of pore structure[J].Gas Science and Engineering, 2023, 119:205138.
    [13]
    LI Teng, WU Jianjun, WANG Xinggang, et al.Particle size effect and temperature effect on the pore structure of low-rank coal[J].ACS Omega, 2021, 6(8):5865-5877.
    [14]
    李天, 任大忠, 甯波, 等.煤层孔隙结构多尺度联合表征及其对可动流体的影响[J].矿业科学学报, 2023, 8(4):569-582.

    LI Tian, REN Dazhong, NING Bo, et al.Multi-scale joint characterization of coal seam pore structure and its influence on movable fluid[J].Journal of Mining Science and Technology, 2023, 8(4):569-582.
    [15]
    杨明, 柳磊, 刘佳佳, 等.中阶煤孔隙结构的氮吸附—压汞—核磁共振联合表征研究[J].煤炭科学技术, 2021, 49(5):67-74.

    YANG Ming, LIU Lei, LIU Jiajia, et al.Study on joint characterization of pore structure of middle-rank coal by nitrogen adsorption-mercury intrusion-NMR[J].Coal Science and Technology, 2021, 49(5):67-74.
    [16]
    LIU Chun, SHI Bin, ZHOU Jian, et al.Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods:application on SEM images of clay materials[J].Applied Clay Science, 2011, 54(1):97-106.
    [17]
    韩贝贝, 秦勇, 张政, 等.基于压汞试验的煤可压缩性研究及压缩量校正[J].煤炭科学技术, 2015, 43(3):68-72.

    HAN Beibei, QIN Yong, ZHANG Zheng, et al.Study on coal compressibility and correction of compression amount based on compressibility of mercury injection test[J].Coal Science and Technology, 2015, 43(3):68-72.
    [18]
    胡彬彬, 张晓阳, 李康, 等.老厂矿区煤储层孔隙结构特征及全尺度表征[J].煤炭科学技术, 2023, 51(S2):165-174.

    HU Binbin, ZHANG Xiaoyang, LI Kang, et al.Pore structure characteristics and full-scale characterization of coal reservoirs in the Laochang mining area[J].Coal Science and Technology, 2023, 51(S2):165-174.
    [19]
    李玲, 汤达祯, 许浩, 等.中煤阶煤岩控制下的煤储层孔裂隙结构特征:以柳林矿区为例[J].中国科技论文, 2015, 10(9):1058-1065.

    LI Ling, TANG Dazhen, XU Hao, et al.Pore and fissure structure characteristics of medium rank coal under the control of coal petrology:taking Liulin mining area as the example[J].China Sciencepaper, 2015, 10(9):1058-1065.
    [20]
    李松, 汤达祯, 许浩, 等.应力条件制约下不同埋深煤储层物性差异演化[J].石油学报, 2015, 36(S1):68-75.

    LI Song, TANG Dazhen, XU Hao, et al.Evolution of physical differences in various buried depth of coal reservoirs under constraint of stress[J].Acta Petrolei Sinica, 2015, 36(S1):68-75.
    [21]
    卢杰林.不同煤阶煤孔径结构特征及全孔径拼接表征[D].徐州:中国矿业大学, 2021. LU Jielin.Characterization of pore structure and full aperture splicing of coal with different coal ranks[D].Xuzhou:China University of Mining and Technology, 2021.
    [22]
    刘怀谦, 王磊, 谢广祥, 等.煤体孔隙结构综合表征及全孔径分形特征[J].采矿与安全工程学报, 2022, 39(3):458-469.

    LIU Huaiqian, WANG Lei, XIE Guangxiang, et al.Comprehensive characterization and full pore size fractal characteristics of coal pore structure[J].Journal of Mining and Safety Engineering, 2022, 39(3):458-469.
    [23]
    张俭让, 卢亚楠, 刘恒, 等.合阳矿区煤体孔隙结构对瓦斯吸附—渗流特性影响的实验研究[J].煤矿安全, 2018, 49(8):19-22.

    ZHANG Jianrang, LU Yanan, LIU Heng, et al.Experimental study on influence of coal pore structure on gas adsorption and seepage characteristics in Heyang mining area[J].Safety in Coal Mines, 2018, 49(8):19-22.
    [24]
    POMONIS P J, TSAOUSI E T.Frenkel Halsey Hill equation, dimensionality of adsorption, and pore anisotropy[J].Langmuir, 2009, 25(17):9986-9994.
    [25]
    李子文, 林柏泉, 郝志勇, 等.煤体多孔介质孔隙度的分形特征研究[J].采矿与安全工程学报, 2013, 30(3):437-442.

    LI Ziwen, LIN Boquan, HAO Zhiyong, et al.Fractal characteristics of porosity for porous media in coal mass[J].Journal of Mining & Safety Engineering, 2013, 30(3):437-442.
    [26]
    任伟光.深部煤体孔裂隙结构的多尺度分形表征及渗透机理研究[D].北京:中国矿业大学(北京), 2022. REN Weiguang.The study on multiscale fractal characterization and permeability mechanism of pore structure in deep coal[D].Beijing:China University of Mining & Technology (Beijing), 2022.
    [27]
    LI Zhongbei, REN Ting, LI Xiangchun, et al.Full-scale pore structure characterization of different rank coals and its impact on gas adsorption capacity:a theoretical model and experimental study[J].Energy, 2023, 277:127621.
    [28]
    张苗, 刘钦节, 王兴阵, 等.整合压汞、N2和CO2吸附的中—高阶煤多重分形特征[J].煤炭学报, 2024, 49(5):2394-2404.

    ZHANG Miao, LIU Qinjie, WANG Xingzhen, et al. Multiple fractal characterization of medium-high rank coal integrating mercury intrusion porosimetry, N2 and CO2 adsorption experiments[J].Journal of China Coal Society, 2024, 49(5):2394-2404.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return