Citation: | ZHENG Yongwang, CUI Yinan, LI Xin, XIAO Cui, GUO Tao, ZHANG Dengfeng. Research and insights for application of CO2-ECBM technology in deep high-rank coal seams: a case study of Jinzhong block, Qinshui Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 143-152. doi: 10.11781/sysydz2025010143 |
[1] |
徐旭辉, 周卓明, 宋振响, 等. 油气资源评价方法关键参数研究和资源分布特征: 以中国石化探区"十三五"资源评价为例[J]. 石油实验地质, 2023, 45(5): 832-843. https://read.cnki.net/web/Journal/Article/SYSD202305002.html
XU Xuhui, ZHOU Zhuoming, SONG Zhenxiang, et al. Methods and key parameters for oil and gas resource assessment and distribution characteristics of oil and gas resource: a case study of resource assessment of SINOPEC during the 13th Five-Year Plan period[J]. Petroleum Geology & Experiment, 2023, 45(5): 832-843. https://read.cnki.net/web/Journal/Article/SYSD202305002.html
|
[2] |
姚艳斌, 孙晓晓, 万磊. 煤层CO2地质封存的微观机理研究[J]. 煤田地质与勘探, 2023, 51(2): 146-157.
YAO Yanbin, SUN Xiaoxiao, WAN Lei. Micro-mechanism of geological sequestration of CO2 in coal seam[J]. Coal Geology & Exploration, 2023, 51(2): 146-157.
|
[3] |
饶孟余, 张遂安, 商昌盛. 提高我国煤层气采收率的主要技术分析[J]. 中国煤层气, 2007, 4(2): 12-16. doi: 10.3969/j.issn.1672-3074.2007.02.003
RAO Mengyu, ZHANG Suian, SHANG Changsheng. Analysis on key techniques to improve CBM recovery in China[J]. China Coalbed Methane, 2007, 4(2): 12-16. doi: 10.3969/j.issn.1672-3074.2007.02.003
|
[4] |
HAN Sijie, SANG Shuxun, LIANG Jingjing, et al. Supercritical CO2 adsorption in a simulated deep coal reservoir environment, implications for geological storage of CO2 in deep coals in the southern Qinshui Basin, China[J]. Energy Science & Engineering, 2019, 7(2): 488-503.
|
[5] |
杜秋浩. CO2—水—煤作用对煤渗透性和力学特性影响的试验研究[D]. 北京: 清华大学, 2019.
DU Qiuhao. Experimental study on effects of CO2-water interactions with coal on permeability and mechanical properties[D]. Beijing: Tsinghua University, 2019.
|
[6] |
王帅峰, 韩思杰, 桑树勋, 等. 煤层亚临界/超临界CO2吸附特征与封存模式[J]. 天然气工业, 2024, 44(6): 152-168. doi: 10.3787/j.issn.1000-0976.2024.06.015
WANG Shuaifeng, HAN Sijie, SANG Shuxun, et al. Adsorption characteristics and storage models of subcritical/supercritical CO2 in coal seams[J]. Natural Gas Industry, 2024, 44(6): 152-168. doi: 10.3787/j.issn.1000-0976.2024.06.015
|
[7] |
刘世奇, 方辉煌, 桑树勋, 等. 基于多物理场耦合求解的煤层CO2-ECBM数值模拟研究[J]. 煤炭科学技术, 2019, 47(9): 51-59.
LIU Shiqi, FANG Huihuang, SANG Shuxun, et al. Numerical simulation study on coal seam CO2-ECBM based on multi-physics fields coupling solution[J]. Coal Science and Technology, 2019, 47(9): 51-59.
|
[8] |
倪冠华, 李钊, 温永瓒, 等. CO2注入下煤层气产出及储层渗透率演化规律[J]. 采矿与安全工程学报, 2022, 39(4): 837-846.
NI Guanhua, LI Zhao, WEN Yongzan, et al. Evolution of coalbed methane output and reservoir permeability under CO2 injection[J]. Journal of Mining & Safety Engineering, 2022, 39(4): 837-846.
|
[9] |
CHARRIÈRE D, POKRYSZKA Z, BEHRA P. Effect of pressure and temperature on diffusion of CO2 and CH4 into coal from the Lorraine Basin (France)[J]. International Journal of Coal Geology, 2010, 81(4): 373-380. doi: 10.1016/j.coal.2009.03.007
|
[10] |
苏现波, 黄津, 王乾, 等. CO2强化煤层气产出与其同步封存实验研究[J]. 煤田地质与勘探, 2023, 51(1): 176-184.
SU Xianbo, HUANG Jin, WANG Qian, et al. Experimental study on CO2-enhanced coalbed methane production and its simultaneous storage[J]. Coal Geology & Exploration, 2023, 51(1): 176-184.
|
[11] |
MUKHERJEE M, MISRA S. A review of experimental research on Enhanced Coal Bed Methane (ECBM) recovery via CO2 sequestration[J]. Earth-Science Reviews, 2018, 179: 392-410. doi: 10.1016/j.earscirev.2018.02.018
|
[12] |
PAN Zhejun, YE Jianping, ZHOU Fubao, et al. CO2 storage in coal to enhance coalbed methane recovery: a review of field experiments in China[J]. International Geology Review, 2018, 60(5/6): 754-776.
|
[13] |
王烽, 汤达祯, 刘洪林, 等. 利用CO2-ECBM技术在沁水盆地开采煤层气和埋藏CO2的潜力[J]. 天然气工业, 2009, 29(4): 117-120.
WANG Feng, TANG Dazhen, LIU Honglin, et al. Analysis on the potential of the carbon dioxide-enhanced coalbed methane (CO2-ECBM) recovery in the Qinshui Basin[J]. Natural Gas Industry, 2009, 29(4): 117-120.
|
[14] |
ZHOU Fengde, HOU Wanwan, ALLINSON G, et al. A feasibility study of ECBM recovery and CO2 storage for a producing CBM field in southeast Qinshui Basin, China[J]. International Journal of Greenhouse Gas Control, 2013, 19: 26-40. doi: 10.1016/j.ijggc.2013.08.011
|
[15] |
叶建平, 张兵, 韩学婷, 等. 深煤层井组CO2注入提高采收率关键参数模拟和试验[J]. 煤炭学报, 2016, 41(1): 149-155.
YE Jianping, ZHANG Bing, HAN Xueting, et al. Well group carbon dioxide injection for enhanced coalbed methane recovery and key parameter of the numerical simulation and application in deep coalbed methane[J]. Journal of China Coal Society, 2016, 41(1): 149-155.
|
[16] |
王鹏. 煤中气体解吸收缩有效应力变化特征[J]. 采矿技术, 2022, 22(1): 86-89. doi: 10.3969/j.issn.1671-2900.2022.01.023
WANG Peng. Variation characteristics of effective stress of gas desorption shrinkage in coal[J]Mining Technology, 2022, 22(1): 86-89. doi: 10.3969/j.issn.1671-2900.2022.01.023
|
[17] |
秦兴林. 煤体孔隙结构及渗透率对不同时长酸化作用的响应规律研究[J]. 煤矿安全, 2020, 51(12): 18-22.
QIN Xinglin. Study on response law of coal pore structure and permeability affected by different time of acidification[J]. Safety in Coal Mines, 2020, 51(12): 18-22.
|
[18] |
马强, 李让. 基于应变角度分析N2和CO2对煤层透气性的影响[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(2): 193-196. doi: 10.3969/j.issn.1008-0562.2010.02.005
MA Qiang, LI Rang. Effect of N2 and CO2 injection on coal permeability due to stain[J]. Journal of Liaoning Technical University (Natural Science), 2010, 29(2): 193-196. doi: 10.3969/j.issn.1008-0562.2010.02.005
|
[19] |
刘佳佳, 聂子硕, 于宝种, 等. 超临界二氧化碳对煤体增透的作用机理及影响因素分析[J]. 煤炭科学技术, 2023, 51(2): 204-216.
LIU Jiajia, NIE Zishuo, YU Baozhong, et al. Analysis of the mechanism and influencing factors of supercritical carbon dioxide on coal permeability enhancement[J]. Coal Science and Technology, 2023, 51(2): 204-216.
|
[20] |
胡婷. 二氧化碳在增强石油开采系统中的迁移转化过程与模型研究[D]. 长春: 吉林大学, 2022.
HU Ting. Study on the process model of CO2 migration and phase transformation in enhanced oil recovery system[D]. Changchun: Jilin University, 2022.
|
[21] |
吴聿元, 陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策[J]. 油气藏评价与开发, 2020, 10(4): 1-11.
WU Yuyuan, CHEN Zhenlong. Challenges and countermeasures for exploration and development of deep CBM of South Yanchuan[J]. Reservoir Evaluation and Development, 2020, 10(4): 1-11.
|
[22] |
王凯峰, 唐书恒, 等. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及"甜点"预测[J]. 岩性油气藏, 2024, 36(04): 98-108.
SHEN Youyi, WANG Kaifeng, TANG Shuheng, et al. Geological modeling and "sweet spot" prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block, Qinshui Basin[J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
|
[23] |
陈贞龙, 王烽, 陈刚, 等. 延川南深部煤层气富集规律及开发特征研究[J]. 煤炭科学技术, 2018, 46(6): 80-84.
CHEN Zhenlong, WANG Feng, CHEN Gang, et al. Study on enrichment law and development features of deep coalbed methane in South Yanchuan Field[J]. Coal Science and Technology, 2018, 46(6): 80-84.
|
[24] |
王青青, 孟艳军, 闫涛滔, 等. 不同煤阶煤储层吸附/解吸特征差异及其对产能的影响[J]. 煤田地质与勘探, 2023, 51(5): 66-77.
WANG Qingqing, MENG Yanjun, YAN Taotao, et al. Differences in the adsorption/desorption characteristics of coal reservoirs with different coal ranks and their effects on the reservoir productivity[J]. Coal Geology & Exploration, 2023, 51(5): 66-77.
|
[25] |
陈贞龙. 解吸阶段划分对延川南煤层气田开发的指示意义[J]. 油气藏评价与开发, 2017, 7(5): 80-84. doi: 10.3969/j.issn.2095-1426.2017.05.015
CHEN Zhenlong. The significance of desorption phase division on the development of coalbed methane fields in southern Yanchuan County[J]. Reservoir Evaluation and Development, 2017, 7(5): 80-84. doi: 10.3969/j.issn.2095-1426.2017.05.015
|
[26] |
SWENSON H, STADIE N P. Langmuir's theory of adsorption: a centennial review[J]. Langmuir, 2019, 35(16): 5409-5426. doi: 10.1021/acs.langmuir.9b00154
|
[27] |
HE Lilin, MELNICHENKO Y B, MASTALERZ M, et al. Pore accessibility by methane and carbon dioxide in coal as determined by neutron scattering[J]. Energy & Fuels, 2012, 26(3): 1975-1983.
|
[28] |
付学祥, 张登峰, 降文萍, 等. 煤体理化性质对其孔隙结构和甲烷吸附性能影响的研究进展[J]. 化工进展, 2019, 38(6): 2714-2725.
FU Xuexiang, ZHANG Dengfeng, JIANG Wenping, et al. Influence of physicochemical properties of coals on pore morphology and methane adsorption: a perspective[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2714-2725.
|
[29] |
LUN Zengmin, FAN Hongfu, WANG Haitao, et al. Interfacial tensions between reservoir brine and CO2 at high pressures for different salinity[J]. Energy & Fuels, 2012, 26(6): 3958-3962.
|
[30] |
YANG Nannan, LIU Shuyan, YANG Xiaoning. Molecular simulation of preferential adsorption of CO2 over CH4 in Na-montmorillonite clay material[J]. Applied Surface Science, 2015, 356: 1262-1271. doi: 10.1016/j.apsusc.2015.08.101
|
[31] |
SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1 100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596. doi: 10.1063/1.555991
|
[32] |
DAY S, SAKUROVS R, WEIR S. Supercritical gas sorption on moist coals[J]. International Journal of Coal Geology, 2008, 74(3/4): 203-214.
|
[33] |
史利燕, 李卫波, 康琴琴, 等. CH4-煤吸附/解吸过程视电阻率变化的实验研究[J]. 油气藏评价与开发, 2022, 12(4): 572-579.
SHI Liyan, LI Weibo, KANG Qinqin, et al. Experimental study on variation of apparent resistivity in CH4-coal adsorption/desorption process[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 572-579.
|
[34] |
王倩倩. 超临界二氧化碳流体对煤体理化性质及吸附性能的作用规律[D]. 昆明: 昆明理工大学, 2016.
WANG Qianqian. Effect of supercritical carbon dioxide fluid on physical and chemical properties and adsorption properties of coal[D]. Kunming: Kunming University of Science and Technology, 2016.
|
[35] |
孟雅, 李治平, 唐书恒, 等. 中、高阶煤样甲烷吸附应变及渗透性实验分析[J]. 煤炭学报, 2021, 46(6): 1915-1924.
MENG Ya, LI Zhiping, TANG Shuheng, et al. Laboratory investigation on methane sorption-induced strain and permeability in middle and high rank coal samples[J]. Journal of China Coal Society, 2021, 46(6): 1915-1924.
|