Volume 47 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
ZHENG Yongwang, CUI Yinan, LI Xin, XIAO Cui, GUO Tao, ZHANG Dengfeng. Research and insights for application of CO2-ECBM technology in deep high-rank coal seams: a case study of Jinzhong block, Qinshui Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 143-152. doi: 10.11781/sysydz2025010143
Citation: ZHENG Yongwang, CUI Yinan, LI Xin, XIAO Cui, GUO Tao, ZHANG Dengfeng. Research and insights for application of CO2-ECBM technology in deep high-rank coal seams: a case study of Jinzhong block, Qinshui Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 143-152. doi: 10.11781/sysydz2025010143

Research and insights for application of CO2-ECBM technology in deep high-rank coal seams: a case study of Jinzhong block, Qinshui Basin

doi: 10.11781/sysydz2025010143
  • Received Date: 2024-10-16
  • Rev Recd Date: 2024-12-13
  • Available Online: 2025-01-24
  • Deep high-rank coal seams have significant resource potential, but exhibit characteristics of “strong adsorption and weak desorption”, making it challenging to effectively utilize with conventional development methods. Compared with other enhanced recovery technologies such as chemical flooding and thermal flooding, CO2-ECBM (CO2 geological sequestration-Enhanced Coal Bed Methane Recovery) technology offers dual benefits of energy conservation and emission reduction, and increased recovery rates of coalbed methane. In order to clarify the characteristics of CO2 adsorption and desorption, demonstrate the feasibility of CO2-ECBM technology in enhancing the recovery of deep high-rank coalbed methane, and help release the productivity of deep high-rank coalbed methane, this study focused on the Jinzhong block, Qinshui Basin, and conducted experimental research on the CO2 adsorption and desorption characteristics of deep high-rank coal seams. The research results showed that the adsorption capacity of CH4 in coal seams increased gradually with rising equilibrium pressures. In contrast, the adsorption capacity of CO2 in coal seams initially increased, then sharply dropped near the critical pressure, followed by a significant rise, which was influenced by the pore and fracture development characteristics of the coal seams and the properties of CO2. The adsorption capacity of CO2 in deep high-rank coal seams was about 2 to 5 times that of CH4, and the adsorption capacity of supercritical CO2 in coal seams was stronger. The sensitive desorption pressure of CO2 was 3/4 of that of CH4. Once adsorbed in coal seams, CO2 showed an obvious adsorption/desorption lag, with a large proportion of CO2 remaining in coal seams in the form of adsorbed storage and residual storage, which provided favorable conditions for large-scale CO2 storage and CH4 replacement. Through the analysis of experimental results, it was clear that developing CO2-ECBM in deep high-rank coal seams was feasible and could significantly enhance coalbed methane recovery. In field application, the pressure level of gas reservoir could be increased through methods such as advanced gas injection and increasing injection pressure, thereby enhancing competitive adsorption efficiency. Additionally, the low sensitive desorption pressure indicated a high backflow rate after CO2 injection, suggesting that CO2 recycling should be considered.

     

  • loading
  • [1]
    徐旭辉, 周卓明, 宋振响, 等.油气资源评价方法关键参数研究和资源分布特征:以中国石化探区“十三五”资源评价为例[J].石油实验地质, 2023, 45(5):832-843.

    XU Xuhui, ZHOU Zhuoming, SONG Zhenxiang, et al.Methods and key parameters for oil and gas resource assessment and distribution characteristics of oil and gas resource:a case study of resource assessment of SINOPEC during the 13th Five-Year Plan period[J].Petroleum Geology & Experiment, 2023, 45(5):832-843.
    [2]
    姚艳斌, 孙晓晓, 万磊.煤层CO2地质封存的微观机理研究[J].煤田地质与勘探, 2023, 51(2):146-157.

    YAO Yanbin, SUN Xiaoxiao, WAN Lei.Micro-mechanism of geological sequestration of CO2 in coal seam[J].Coal Geology & Exploration, 2023, 51(2):146-157.
    [3]
    饶孟余, 张遂安, 商昌盛.提高我国煤层气采收率的主要技术分析[J].中国煤层气, 2007, 4(2):12-16.

    RAO Mengyu, ZHANG Suian, SHANG Changsheng.Analysis on key techniques to improve CBM recovery in China[J].China Coalbed Methane, 2007, 4(2):12-16.
    [4]
    HAN Sijie, SANG Shuxun, LIANG Jingjing, et al.Supercritical CO2 adsorption in a simulated deep coal reservoir environment, implications for geological storage of CO2 in deep coals in the southern Qinshui Basin, China[J].Energy Science & Engineering, 2019, 7(2):488-503.
    [5]
    杜秋浩.CO2—水—煤作用对煤渗透性和力学特性影响的试验研究[D].北京:清华大学, 2019. DU Qiuhao.Experimental study on effects of CO2-water interactions with coal on permeability and mechanical properties[D].Beijing:Tsinghua University, 2019.
    [6]
    王帅峰, 韩思杰, 桑树勋, 等.煤层亚临界/超临界CO2吸附特征与封存模式[J].天然气工业, 2024, 44(6):152-168.

    WANG Shuaifeng, HAN Sijie, SANG Shuxun, et al.Adsorption characteristics and storage models of subcritical/supercritical CO2 in coal seams[J].Natural Gas Industry, 2024, 44(6):152-168.
    [7]
    刘世奇, 方辉煌, 桑树勋, 等.基于多物理场耦合求解的煤层CO2-ECBM数值模拟研究[J].煤炭科学技术, 2019, 47(9):51-59.

    LIU Shiqi, FANG Huihuang, SANG Shuxun, et al.Numerical simulation study on coal seam CO2-ECBM based on multi-physics fields coupling solution[J].Coal Science and Technology, 2019, 47(9):51-59.
    [8]
    倪冠华, 李钊, 温永瓒, 等.CO2注入下煤层气产出及储层渗透率演化规律[J].采矿与安全工程学报, 2022, 39(4):837-846.

    NI Guanhua, LI Zhao, WEN Yongzan, et al.Evolution of coalbed methane output and reservoir permeability under CO2 injection[J].Journal of Mining & Safety Engineering, 2022, 39(4):837-846.
    [9]
    CHARRIÈRE D, POKRYSZKA Z, BEHRA P.Effect of pressure and temperature on diffusion of CO2 and CH4 into coal from the Lorraine Basin (France)[J].International Journal of Coal Geology, 2010, 81(4):373-380.
    [10]
    苏现波, 黄津, 王乾, 等.CO2强化煤层气产出与其同步封存实验研究[J].煤田地质与勘探, 2023, 51(1):176-184.

    SU Xianbo, HUANG Jin, WANG Qian, et al.Experimental study on CO2-enhanced coalbed methane production and its simultaneous storage[J].Coal Geology & Exploration, 2023, 51(1):176-184.
    [11]
    MUKHERJEE M, MISRA S.A review of experimental research on Enhanced Coal Bed Methane (ECBM) recovery via CO2 sequestration[J].Earth-Science Reviews, 2018, 179:392-410.
    [12]
    PAN Zhejun, YE Jianping, ZHOU Fubao, et al.CO2 storage in coal to enhance coalbed methane recovery:a review of field experiments in China[J].International Geology Review, 2018, 60(5/6):754-776.
    [13]
    王烽, 汤达祯, 刘洪林, 等.利用CO2-ECBM技术在沁水盆地开采煤层气和埋藏CO2的潜力[J].天然气工业, 2009, 29(4):117-120.

    WANG Feng, TANG Dazhen, LIU Honglin, et al.Analysis on the potential of the carbon dioxide-enhanced coalbed methane (CO2-ECBM) recovery in the Qinshui Basin[J].Natural Gas Industry, 2009, 29(4):117-120.
    [14]
    ZHOU Fengde, HOU Wanwan, ALLINSON G, et al.A feasibility study of ECBM recovery and CO2 storage for a producing CBM field in southeast Qinshui Basin, China[J].International Journal of Greenhouse Gas Control, 2013, 19:26-40.
    [15]
    叶建平, 张兵, 韩学婷, 等.深煤层井组CO2注入提高采收率关键参数模拟和试验[J].煤炭学报, 2016, 41(1):149-155.

    YE Jianping, ZHANG Bing, HAN Xueting, et al.Well group carbon dioxide injection for enhanced coalbed methane recovery and key parameter of the numerical simulation and application in deep coalbed methane[J].Journal of China Coal Society, 2016, 41(1):149-155.
    [16]
    王鹏.煤中气体解吸收缩有效应力变化特征[J].采矿技术, 2022, 22(1):86-89.

    WANG Peng.Variation characteristics of effective stress of gas desorption shrinkage in coal[J]Mining Technology, 2022, 22(1):86-89.
    [17]
    秦兴林.煤体孔隙结构及渗透率对不同时长酸化作用的响应规律研究[J].煤矿安全, 2020, 51(12):18-22.

    QIN Xinglin.Study on response law of coal pore structure and permeability affected by different time of acidification[J].Safety in Coal Mines, 2020, 51(12):18-22.
    [18]
    马强, 李让.基于应变角度分析N2和CO2对煤层透气性的影响[J].辽宁工程技术大学学报(自然科学版), 2010, 29(2):193-196. MA Qiang, LI Rang.Effect of N2 and CO2 injection on coal permeability due to stain[J].Journal of Liaoning Technical University (Natural Science), 2010, 29(2):193-196.
    [19]
    刘佳佳, 聂子硕, 于宝种, 等.超临界二氧化碳对煤体增透的作用机理及影响因素分析[J].煤炭科学技术, 2023, 51(2):204-216.

    LIU Jiajia, NIE Zishuo, YU Baozhong, et al.Analysis of the mechanism and influencing factors of supercritical carbon dioxide on coal permeability enhancement[J].Coal Science and Technology, 2023, 51(2):204-216.
    [20]
    胡婷.二氧化碳在增强石油开采系统中的迁移转化过程与模型研究[D].长春:吉林大学, 2022. HU Ting.Study on the process model of CO2 migration and phase transformation in enhanced oil recovery system[D].Changchun:Jilin University, 2022.
    [21]
    吴聿元, 陈贞龙.延川南深部煤层气勘探开发面临的挑战和对策[J].油气藏评价与开发, 2020, 10(4):1-11.

    WU Yuyuan, CHEN Zhenlong.Challenges and countermeasures for exploration and development of deep CBM of South Yanchuan[J].Reservoir Evaluation and Development, 2020, 10(4):1-11.
    [22]
    王凯峰, 唐书恒, 等. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J].岩性油气藏, 2024, 36(04):98-108.

    SHEN Youyi, WANG Kaifeng, TANG Shuheng, et al.Geological modeling and “sweet spot” prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block, Qinshui Basin[J].Lithologic Reservoirs, 2024, 36(4):98-108.
    [23]
    陈贞龙, 王烽, 陈刚, 等.延川南深部煤层气富集规律及开发特征研究[J].煤炭科学技术, 2018, 46(6):80-84.

    CHEN Zhenlong, WANG Feng, CHEN Gang, et al.Study on enrichment law and development features of deep coalbed methane in South Yanchuan Field[J].Coal Science and Technology, 2018, 46(6):80-84.
    [24]
    王青青, 孟艳军, 闫涛滔, 等.不同煤阶煤储层吸附/解吸特征差异及其对产能的影响[J].煤田地质与勘探, 2023, 51(5):66-77.

    WANG Qingqing, MENG Yanjun, YAN Taotao, et al.Differences in the adsorption/desorption characteristics of coal reservoirs with different coal ranks and their effects on the reservoir productivity[J].Coal Geology & Exploration, 2023, 51(5):66-77.
    [25]
    陈贞龙.解吸阶段划分对延川南煤层气田开发的指示意义[J].油气藏评价与开发, 2017, 7(5):80-84.

    CHEN Zhenlong.The significance of desorption phase division on the development of coalbed methane fields in southern Yanchuan County[J].Reservoir Evaluation and Development, 2017, 7(5):80-84.
    [26]
    SWENSON H, STADIE N P.Langmuir’s theory of adsorption:a centennial review[J].Langmuir, 2019, 35(16):5409-5426.
    [27]
    HE Lilin, MELNICHENKO Y B, MASTALERZ M, et al.Pore accessibility by methane and carbon dioxide in coal as determined by neutron scattering[J].Energy & Fuels, 2012, 26(3):1975-1983.
    [28]
    付学祥, 张登峰, 降文萍, 等.煤体理化性质对其孔隙结构和甲烷吸附性能影响的研究进展[J].化工进展, 2019, 38(6):2714-2725.

    FU Xuexiang, ZHANG Dengfeng, JIANG Wenping, et al.Influence of physicochemical properties of coals on pore morphology and methane adsorption:a perspective[J].Chemical Industry and Engineering Progress, 2019, 38(6):2714-2725.
    [29]
    LUN Zengmin, FAN Hongfu, WANG Haitao, et al.Interfacial tensions between reservoir brine and CO2 at high pressures for different salinity[J].Energy & Fuels, 2012, 26(6):3958-3962.
    [30]
    YANG Nannan, LIU Shuyan, YANG Xiaoning.Molecular simulation of preferential adsorption of CO2 over CH4 in Na-montmorillonite clay material[J].Applied Surface Science, 2015, 356:1262-1271.
    [31]
    SPAN R, WAGNER W.A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1 100 K at pressures up to 800 MPa[J].Journal of Physical and Chemical Reference Data, 1996, 25(6):1509-1596.
    [32]
    DAY S, SAKUROVS R, WEIR S.Supercritical gas sorption on moist coals[J].International Journal of Coal Geology, 2008, 74(3/4):203-214.
    [33]
    史利燕, 李卫波, 康琴琴, 等.CH4-煤吸附/解吸过程视电阻率变化的实验研究[J].油气藏评价与开发, 2022, 12(4):572-579.

    SHI Liyan, LI Weibo, KANG Qinqin, et al.Experimental study on variation of apparent resistivity in CH4-coal adsorption/desorption process[J].Petroleum Reservoir Evaluation and Development, 2022, 12(4):572-579.
    [34]
    王倩倩.超临界二氧化碳流体对煤体理化性质及吸附性能的作用规律[D].昆明:昆明理工大学, 2016. WANG Qianqian.Effect of supercritical carbon dioxide fluid on physical and chemical properties and adsorption properties of coal[D].Kunming:Kunming University of Science and Technology, 2016.
    [35]
    孟雅, 李治平, 唐书恒, 等.中、高阶煤样甲烷吸附应变及渗透性实验分析[J].煤炭学报, 2021, 46(6):1915-1924.

    MENG Ya, LI Zhiping, TANG Shuheng, et al.Laboratory investigation on methane sorption-induced strain and permeability in middle and high rank coal samples[J].Journal of China Coal Society, 2021, 46(6):1915-1924.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return