Volume 47 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
HUANG Shuxin, LI Song, CHEN Bo. Hydraulic fracture propagation characteristics of directional perforation fracturing in horizontal wells for deep coalbed methane[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 153-162. doi: 10.11781/sysydz2025010153
Citation: HUANG Shuxin, LI Song, CHEN Bo. Hydraulic fracture propagation characteristics of directional perforation fracturing in horizontal wells for deep coalbed methane[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 153-162. doi: 10.11781/sysydz2025010153

Hydraulic fracture propagation characteristics of directional perforation fracturing in horizontal wells for deep coalbed methane

doi: 10.11781/sysydz2025010153
  • Received Date: 2024-09-29
  • Rev Recd Date: 2024-12-03
  • Available Online: 2025-01-24
  • Deep coalbed methane resources exhibit favorable geological characteristics and significant exploration and development potential, offering a substantial foundation for China’s strategy to enhance natural gas storage and production. Directional perforation fracturing of horizontal wells is widely used as an important permeability enhancement technology for deep coalbed methane exploration. However, the mechanisms of hydraulic fracture initiation and propagation under the influence of geological and engineering factors remain unclear. To explore directional perforation fracturing characteristics in deep coal seams, a three-dimensional discrete lattice simulation algorithm was used to establish a numerical model. The paper studied the effects of geological and perforation parameters on fracturing difficulty, fracture morphology, and stimulated reservoir area (SRA). The results showed that, with the increase in elastic modulus, coal seam fracture pressure rose, and SRA and its variation coefficient increased gradually, which is conducive to long and narrow fracture formation. An increase in horizontal stress differences weakened the interaction between hydraulic fractures, reducing SRA while increasing its variation coefficient and fracture aperture. In addition, increasing perforation depth and diameter significantly reduced the fracture pressure in deep coal seams. Higher perforation depths greatly increased SRA, whereas larger perforation diameters decreased SRA, and its variation coefficient increased gradually. Perforation density had no significant impact on fracture pressure, but was positively correlated with SRA. The study suggests that for fracturing of structurally intact coal seams, increasing perforation depth and density while reducing perforation diameter can achieve better results.

     

  • loading
  • [1]
    JIA Li, PENG Shoujian, XU Jiang, et al.Investigation on gas drainage effect under different borehole layout via 3D monitoring of gas pressure[J].Journal of Natural Gas Science and Engineering, 2022, 101:104522.
    [2]
    ZHANG Zetian, XIE Heping, ZHANG Ru, et al.Size and spatial fractal distributions of coal fracture networks under different mining-induced stress conditions[J].International Journal of Rock Mechanics and Mining Sciences, 2020, 132:104364.
    [3]
    LI Song, TANG Dazhen, PAN Zhejun, et al.Geological conditions of deep coalbed methane in the eastern margin of the Ordos Basin, China:implications for coalbed methane development[J].Journal of Natural Gas Science and Engineering, 2018, 53:394-402.
    [4]
    康永尚, 皇甫玉慧, 张兵, 等.含煤盆地深层“超饱和”煤层气形成条件[J].石油学报, 2019, 40(12):1426-1438.

    KANG Yongshang, HUANGFU Yuhui, ZHANG Bing, et al.Formation conditions for deep oversaturated coalbed methane in coal-bearing basins[J].Acta Petrolei Sinica, 2019, 40(12):1426-1438.
    [5]
    LI Song, QIN Yong, TANG Dazhen, et al.A comprehensive review of deep coalbed methane and recent developments in China[J].International Journal of Coal Geology, 2023, 279:104369.
    [6]
    桑树勋, 韩思杰, 周效志, 等.华东地区深部煤层气资源与勘探开发前景初探[J].油气藏评价与开发, 2023, 13(4):403-415.

    SANG Shuxun, HAN Sijie, ZHOU Xiaozhi, et al.Deep coalbed methane resource and its exploration and development prospect in East China[J].Petroleum Reservoir Evaluation and Development, 2023, 13(4):403-415.
    [7]
    聂志宏, 时小松, 孙伟, 等.大宁—吉县区块深层煤层气生产特征与开发技术对策[J].煤田地质与勘探, 2022, 50(3):193-200.

    NIE Zhihong, SHI Xiaosong, SUN Wei, et al.Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian block and its development technology countermeasures[J].Coal Geology & Exploration, 2022, 50(3):193-200.
    [8]
    张鹏豹, 肖宇航, 朱庆忠, 等.深层倾斜风化煤层特征及其对煤层气开发的影响:以河北大城区块南部为例[J].天然气工业, 2021, 41(11):86-96.

    ZHANG Pengbao, XIAO Yuhang, ZHU Qingzhong, et al.Characteristics of deep inclined weathered coalbed reservoir and its influence on coalbed methane development:a case study of the southern Dacheng block of Hebei Province[J].Natural Gas Industry, 2021, 41(11):86-96.
    [9]
    桑树勋, 郑司建, 王建国, 等.岩石力学地层新方法在深部煤层气勘探开发“甜点”预测中的应用[J].石油学报, 2023, 44(11):1840-1853.

    SANG Shuxun, ZHENG Sijian, WANG Jianguo, et al.Application of new rock mechanical stratigraphy in sweet spot prediction for deep coalbed methane exploration and development[J].Acta Petrolei Sinica, 2023, 44(11):1840-1853.
    [10]
    杨兆彪, 李存磊, 郭巧珍, 等.新疆准噶尔盆地白家海凸起深部煤层气不同赋存态分配规律[J/OL].中国矿业大学学报, 1-11(2024-09-29

    ).https://www.cnki.com.cn/Article/CJFDTotal-ZGKD20240927001.htm. YANG Zhaobiao, LI Cunlei, GUO Qiaozhen, et al.Distribution patterns of various occurrence states of deep coalbed methane in the Baijiahai Uplift, Junggar Basin, Xinjiang[J/OL].Journal of China University of Mining & Technology, 1-11(2024-09-29).https://www.cnki.com.cn/Article/CJFDTotal-ZGKD20240927001.htm.
    [11]
    明盈, 孙豪飞, 汤达祯, 等.四川盆地上二叠统龙潭组深—超深部煤层气资源开发潜力[J].煤田地质与勘探, 2024, 52(2):102-112.

    MING Ying, SUN Haofei, TANG Dazhen, et al.Potential for the production of deep to ultradeep coalbed methane resources in the Upper Permian Longtan Formation, Sichuan Basin[J].Coal Geology and Exploration, 2024, 52(2):102-112.
    [12]
    冯义, 任凯, 刘俊田, 等.深层煤层气水平井安全钻井技术[J].钻采工艺, 2024, 47(3):33-41.

    FENG Yi, REN Kai, LIU Juntian, et al.Safe drilling technology for deep CBM horizontal wells[J].Drilling and Production Technology, 2024, 47(3):33-41.
    [13]
    梁龙军, 陈捷, 颜智华, 等.六盘水煤田大倾角地层煤层气L型水平井钻完井技术[J].断块油气田, 2023, 30(4):616-623.

    LIANG Longjun, CHEN Jie, YAN Zhihua, et al.Drilling and completion technology of L-shaped horizontal wells for coalbed methane in high-dip formation in Liupanshui coalfield[J].Fault-Block Oil & Gas Field, 2023, 30(4):616-623.
    [14]
    姚红生, 陈贞龙, 何希鹏, 等.深部煤层气“有效支撑”理念及创新实践:以鄂尔多斯盆地延川南煤层气田为例[J].天然气工业, 2022, 42(6):97-106.

    YAO Hongsheng, CHEN Zhenlong, HE Xipeng, et al.“Effective support”concept and innovative practice of deep CBM in South Yanchuan Gas Field of the Ordos Basin[J].Natural Gas Industry, 2022, 42(6):97-106.
    [15]
    PU Yifan, LI Song, TANG Dazhen, et al.Numerical simulation study on the effectiveness of temporary plugging and fracturing in deep coal seam to construct complex fracture network[J].Geoenergy Science and Engineering, 2023, 227:211939.
    [16]
    陈贞龙.延川南深部煤层气田地质单元划分及开发对策[J].煤田地质与勘探, 2021, 49(2):13-20.

    CHEN Zhenlong.Geological unit division and development countermeasures of deep coalbed methane in southern Yanchuan block[J].Coal Geology & Exploration, 2021, 49(2):13-20.
    [17]
    陈贞龙, 郭涛, 李鑫, 等.延川南煤层气田深部煤层气成藏规律与开发技术[J].煤炭科学技术, 2019, 47(9):112-118.

    CHEN Zhenlong, GUO Tao, LI Xin, et al.Enrichment law and development technology of deep coalbed methane in South Yanchuan Coalbed Methane Field[J].Coal Science and Technology, 2019, 47(9):112-118.
    [18]
    薛洋.WC-X1井空心斜向器与定向射孔技术研究及应用[J].复杂油气藏, 2023, 16(1):114-117.

    XUE Yang.Research and application of hollow whipstock and directional perforation technology in well WC-X1[J].Complex Hydrocarbon Reservoirs, 2023, 16(1):114-117.
    [19]
    李可心, 张聪, 李俊, 等.沁水盆地南部煤层气水平井射孔优化[J].新疆石油地质, 2024, 45(5):581-589.

    LI Kexin, ZHANG Cong, LI Jun, et al.Optimization of perforation in CBM horizontal wells in southern Qinshui Basin[J].Xinjiang Petroleum Geology, 2024, 45(5):581-589.
    [20]
    刘合, 王峰, 王毓才, 等.现代油气井射孔技术发展现状与展望[J].石油勘探与开发, 2014, 41(6):731-737.

    LIU He, WANG Feng, WANG Yucai, et al.Oil well perforation technology:status and prospects[J].Petroleum Exploration and Development, 2014, 41(6):731-737.
    [21]
    赵成龙, 王俊石, 卢启敬.现代油气井射孔技术发展现状与展望[J].石化技术, 2022, 29(8):216-218.

    ZHAO Chenglong, WANG Junshi, LU Qijing.Oil well perforation technology:status and prospects[J].Petrochemical Industry Technology, 2022, 29(8):216-218.
    [22]
    MILLER C K, WATERS G A, RYLANDER E I.Evaluation of production log data from horizontal wells drilled in organic shales[C]//North American Unconventional Gas Conference and Exhibition.The Woodlands, Texas, USA:OnePetro, 2011:SPE-144326-MS.
    [23]
    LI Yuwei, HUBUQIN, WU Jing, et al.Optimization method of oriented perforation parameters improving uneven fractures initiation for horizontal well fracturing[J].Fuel, 2023, 349:128754.
    [24]
    ZHANG Jun, LI Yuwei, PAN Yishan, et al.Experiments and analysis on the influence of multiple closed cemented natural fractures on hydraulic fracture propagation in a tight sandstone reservoir[J].Engineering Geology, 2021, 281:105981.
    [25]
    张儒鑫, 侯冰, 单清林, 等.致密砂岩储层水平井螺旋射孔参数优化研究[J].岩土工程学报, 2018, 40(11):2143-2147.

    ZHANG Ruxin, HOU Bing, SHAN Qinglin, et al.Parameter optimization of spiral perforations in horizontal well with tight sandstone reservoir[J].Chinese Journal of Geotechnical Engineering, 2018, 40(11):2143-2147.
    [26]
    ZHANG Ruxin, HOU Bing, SHAN Qinglin, et al.Hydraulic fracturing initiation and near-wellbore nonplanar propagation from horizontal perforated boreholes in tight formation[J].Journal of Natural Gas Science and Engineering, 2018, 55:337-349.
    [27]
    LI Minghui, ZHOU Fujian, DONG Enjia, et al.Experimental study on the multiple fracture simultaneous propagation during extremely limited-entry fracturing[J].Journal of Petroleum Science and Engineering, 2022, 218:110906.
    [28]
    GUO Peng, LI Xiao, LI Shouding, et al.Experimental investigation of simultaneous and asynchronous hydraulic fracture growth from multiple perforations in shale considering stress anisotropy[J].Rock Mechanics and Rock Engineering, 2023, 56(11):8209-8220.
    [29]
    单清林, 金衍, 韩玲, 等.水平井螺旋射孔参数对近井筒裂缝形态影响规律[J].石油科学通报, 2017, 2(1):44-52.

    SHAN Qinglin, JIN Yan, HAN Ling, et al.Influence of spiral perforation parameters on fracture geometry near horizontal wellbores[J].Petroleum Science Bulletin, 2017, 2(1):44-52.
    [30]
    LI Jing, WANG Lixiang, FENG Chun, et al.Study on the influence of perforation parameters on hydraulic fracture initiation and propagation based on CDEM[J].Computers and Geotechnics, 2024, 167:106061.
    [31]
    SHAN Qinglin, ZHANG Ruxin, JIANG Yujing.Complexity and tortuosity hydraulic fracture morphology due to near-wellbore nonplanar propagation from perforated horizontal wells[J].Journal of Natural Gas Science and Engineering, 2021, 89:103884.
    [32]
    LIAN Zhanghua, MENG Yingfeng, TONG Min.A new method of numerical simulation for perforation completion of fracture formation[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition.Brisbane, Australia:SPE, 2000.
    [33]
    ZHANG Guangqing, CHEN Mian.Complex fracture shapes in hydraulic fracturing with orientated perforations[J].Petroleum Exploration and Development, 2009, 36(1):103-107.
    [34]
    ZHANG F, MACK M.Modeling of hydraulic fracture initiation from perforation tunnels using the 3D lattice method[C]//50th U.S. Rock Mechanics/Geomechanics Symposium.Houston, Texas:OnePetro, 2016:ARMA-2016-534.
    [35]
    HUANG Liuke, LIU Jianjun, ZHANG Fengshou, et al.3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models[J].Journal of Petroleum Science and Engineering, 2020, 191:107169.
    [36]
    WANG Xiaohua, TANG Meirong, DU Xianfei, et al.Three-dimensional experimental and numerical investigations on fracture initiation and propagation for oriented limited-entry perforation and helical perforation[J].Rock Mechanics and Rock Engineering, 2023, 56(1):437-462.
    [37]
    付海峰, 黄刘科, 张丰收, 等.射孔模式对水力压裂裂缝起裂与扩展的影响机制研究[J].岩石力学与工程学报, 2021, 40(S2):3163-3173.

    FU Haifeng, HUANG Liuke, ZHANG Fengshou, et al.Effect of perforation technologies on the initiation and propagation of hydraulic fracture[J].Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2):3163-3173.
    [38]
    赵凯凯, 张镇, 李文洲, 等.基于XSite的钻孔起裂水力裂缝三维扩展研究[J].岩土工程学报, 2021, 43(8):1483-1491.

    ZHAO Kaikai, ZHANG Zhen, LI Wenzhou, et al.Three-dimensional simulation of hydraulic fracture from a borehole using XSite[J].Chinese Journal of Geotechnical Engineering, 2021, 43(8):1483-1491.
    [39]
    柳贡慧, 庞飞, 陈治喜.水力压裂模拟实验中的相似准则[J].石油大学学报(自然科学版), 2000, 24(5):45-48. LIU Gonghui, PANG Fei, CHEN Zhixi.Development of scaling laws for hydraulic fracture simulation tests[J].Journal of the University of Petroleum, China, 2000, 24(5):45-48.
    [40]
    郭天魁, 刘晓强, 顾启林.射孔井水力压裂模拟实验相似准则推导[J].中国海上油气, 2015, 27(3):108-112.

    GUO Tiankui, LIU Xiaoqiang, GU Qilin.Deduction of similarity laws of hydraulic fracturing simulation experiments for perforated wells[J].China Offshore Oil and Gas, 2015, 27(3):108-112.
    [41]
    侯冰, 陈勉, 李志猛, 等.页岩储集层水力裂缝网络扩展规模评价方法[J].石油勘探与开发, 2014, 41(6):763-768.

    HOU Bing, CHEN Mian, LI Zhimeng, et al.Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs[J].Petroleum Exploration and Development, 2014, 41(6):763-768.
    [42]
    LECAMPION B, BUNGER A, ZHANG Xi.Numerical methods for hydraulic fracture propagation:a review of recent trends[J].Journal of Natural Gas Science and Engineering, 2018, 49:66-83.
    [43]
    CONG Ziyuan, LI Yuwei, TANG Jizhou, et al.Numerical simulation of hydraulic fracture height layer-through propagation based on three-dimensional lattice method[J].Engineering Fracture Mechanics, 2022, 264:108331.
    [44]
    GU Hongren, SIEBRITS E.Effect of formation modulus contrast on hydraulic fracture height containment[J].SPE Production & Operations, 2008, 23(2):170-176.
    [45]
    BRUMLEY J L, ABASS H H.Hydraulic fracturing of deviated wells:interpretation of breakdown and initial fracture opening pressure[C]//SPE Eastern Regional Meeting.Columbus, Ohio:SPE, 1996:SPE-37363-MS.
    [46]
    余前港.螺旋射孔裂缝扩展规律及不同储层压裂优化研究[D].大庆:东北石油大学, 2023. YU Qiangang.Study on fracture propagation law of spiral perforation and optimization of fracturing for different reservoirs[D].Daqing:Northeast Petroleum University, 2023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (5) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return