Citation: | HAN Xueting, MENG Shangzhi, LIU Guangjing, REN Zhenyu, TAO Shu, MEN Xinyang, WEI Ziyang. Impact of new coalbed methane wells on old well productivity and its controlling factors: a case study of Shizhuangnan block in Qinshui Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 195-203. doi: 10.11781/sysydz2025010195 |
[1] |
徐凤银, 侯伟, 熊先钺, 等.中国煤层气产业现状与发展战略[J].石油勘探与开发, 2023, 50(4):669-682.
XU Fengyin, HOU Wei, XIONG Xianyue, et al.The status and development strategy of coalbed methane industry in China[J].Petroleum Exploration and Development, 2023, 50(4):669-682.
|
[2] |
秦勇.中国深部煤层气地质研究进展[J].石油学报, 2023, 44(11):1791-1811.
QIN Yong.Progress on geological research of deep coalbed methane in China[J].Acta Petrolei Sinica, 2023, 44(11):1791-1811.
|
[3] |
陈世达, 汤达祯, 侯伟, 等.深部煤层气地质条件特殊性与储层工程响应[J].石油学报, 2023, 44(11):1993-2006.
CHEN Shida, TANG Dazhen, HOU Wei, et al.Geological particularity and reservoir engineering response of deep coalbed methane[J].Acta Petrolei Sinica, 2023, 44(11):1993-2006.
|
[4] |
冯义, 任凯, 刘俊田, 等.深层煤层气水平井安全钻井技术[J].钻采工艺, 2024, 47(3):33-41.
FENG Yi, REN Kai, LIU Juntian, et al.Safe drilling technology for deep CBM horizontal wells[J].Drilling and Production Technology, 2024, 47(3):33-41.
|
[5] |
桑树勋, 韩思杰, 周效志, 等.华东地区深部煤层气资源与勘探开发前景初探[J].油气藏评价与开发, 2023, 13(4): 403-415.
SANG Shuxun, HAN Sijie, ZHOU Xiaozhi, et al.Deep coalbed methane resource and its exploration and development prospect in East China [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4):403-415.
|
[6] |
孔祥伟, 谢昕, 王存武, 等.基于灰色关联方法的深层煤层气井压后产能影响地质工程因素评价[J].油气藏评价与开发, 2023, 13(4): 433-440.
KONG Xiangwei, XIE Xin, WANG Cunwu, et al. Evaluation of geological engineering factors for productivity of deep CBM well after fracturing based on grey correlation method[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 433-440.
|
[7] |
李小刚, 秦杨, 刘紫微, 等.微波强化煤层气井压裂开采的物性规律[J].特种油气藏, 2024, 31(3):70-77.
LI Xiaogang, QIN Yang, LIU Ziwei, et al.Physical property law of coalbed methane well fracturing development enhanced by microwave[J].Special Oil & Gas Reservoirs, 2024, 31(3):70-77.
|
[8] |
孔祥伟, 谢昕, 王存武.基于综合可压指数的煤层气水平井压裂分段参数优化[J].油气藏评价与开发, 2024, 14(6): 925-932.
KONG Xiangwei, XIE Xin, WANG Cunwu.Optimization of segmented fracturing parameters for coalbed methane horizontal wells based on comprehensive fracability index[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6):925-932.
|
[9] |
李可心, 张聪, 李俊, 等.沁水盆地南部煤层气水平井射孔优化[J].新疆石油地质,2024,45(5):581-589. LI Kexin, ZHANG Cong, LI Jun, et al.Optimization of perforation in CBM horizontal wells in southern Qinshui basin[J].Xinjiang Petroleum Geology, 2024, 45(5):581-589.
|
[10] |
段宝江, 孙雨亭, 刘成桢, 等.柿庄南煤层气低效井区水平井加密技术研究及应用[J].江汉大学学报(自然科学版), 2023, 51(2):90-96. DUAN Baojiang, SUN Yuting, LIU Chengzhen, et al.Research and application of horizontal well infilling technology in low-efficiency well area of Shizhuang south coalbed methane field[J].Journal of Jianghan University (Natural Science Edition), 2023, 51(2):90-96.
|
[11] |
张万春, 郭布民, 孔鹏, 等.柿庄南煤层气重复压裂裂缝形态反演及效果分析评价[J].非常规油气, 2022, 9(1):119-128.
ZHANG Wanchun, GUO Bumin, KONG Peng, et al.Fracture morphology inversion and effect evaluation of CBM refracturing in southern Shizhuang block[J].Unconventional Oil & Gas, 2022, 9(1):119-128.
|
[12] |
李勇, 王延斌, 倪小明, 等.煤层气低效井成因判识及治理体系构建研究[J].煤炭科学技术, 2020, 48(2):185-193.
LI Yong, WANG Yanbin, NI Xiaoming, et al.Study on identification and control system construction of low efficiency coalbed methane wells[J].Coal Science and Technology, 2020, 48(2):185-193.
|
[13] |
陈明, 孙俊义, 王立伟, 等.大宁—吉县区块深层煤层气井间压窜主控因素分析及防治对策研究[J/OL].煤炭科学技术, 1-8[2024-09-16
].http://kns.cnki.net/kcms/detail/11.2402.TD.20240902.1652.020.html. CHEN Ming, SUN Junyi, WANG Liwei, et al.Analysis of the main controlling factors of intra-well frac hit between deep coalbed methane in Daning-Jixian block and research on countermeasures to prevent and control it[J/OL].Coal Science and Technology, 1-8[2024-09-16].http://kns.cnki.net/kcms/detail/11.2402.TD.20240902.1652.020.html.
|
[14] |
王喆.延川南煤层气田压窜井影响因素分析和措施[J].中国石油和化工标准与质量, 2022, 42(16):9-11.
WANG Zhe.Analysis and measures of pressure intra-well frac hit in south CBM field[J].China Petroleum and Chemical Standard and Quality, 2022, 42(16):9-11.
|
[15] |
姚秀田, 苏鑫坤, 郑昕, 等.特高含水期油藏井网调整开发效果三维物理模拟实验研究[J].油气地质与采收率, 2023, 30(1):139-145.
YAO Xiutian, SU Xinkun, ZHENG Xin, et al.3D physical simulation experiments of development effects after well pattern adjustment in extra-high water cut reservoirs[J].Petroleum Geology and Recovery Efficiency, 2023, 30(1):139-145.
|
[16] |
王挺, 汪杰, 江厚顺, 等.页岩水平井水力压裂裂缝扩展及防窜三维地质模拟[J]. 新疆石油地质,2023,44(6):720-728. WANG Ting, WANG Jie, JIANG Houshun, et al.3D geological simulation of hydraulic fracture propagation and frac-hit prevention in horizontal shale gas wells[J].Xinjiang Petroleum Geology, 2023, 44(6):720-728.
|
[17] |
胡永章, 唐煊赫, 朱海燕, 等.威荣深层页岩储层水力压裂多井压窜现象及机理[J].断块油气田, 2024, 31(5):851-857.
HU Yongzhang, TANG Xuanhe, ZHU Haiyan, et al.Phenomenon and mechanism of multi-well frac hits hydraulic fracturing in Weirong deep shale reservoir[J].Fault-Block Oil & Gas Field, 2024, 31(5):851-857.
|
[18] |
何乐, 袁灿明, 龚蔚.页岩气井间压窜影响因素分析和防窜对策[J].油气藏评价与开发, 2020, 10(5):63-69.
HE Le, YUAN Canming, GONG Wei.Influencing factors and preventing measures of intra-well frac hit in shale gas[J].Reservoir Evaluation and Development, 2020, 10(5):63-69.
|
[19] |
罗志锋, 李建斌, 张楠林, 等.小井距压裂防窜机理研究与应用[J].断块油气田, 2023, 30(4):593-600.
LUO Zhifeng, LI Jianbin, ZHANG Nanlin, et al.Research and application of anti-channeling mechanism in small well spacing fracturing[J].Fault-Block Oil & Gas Field, 2023, 30(4):593-600.
|
[20] |
郑马嘉, 欧志鹏, 伍亚, 等.深层页岩气井压窜特征与产能维护对策:以四川盆地泸203井区北部为例[J].天然气工业, 2024, 44(8):95-106.
ZHENG Majia, OU Zhipeng, WU Ya, et al.Frac-hit characteristics and productivity maintenance strategies of deep shale gas wells:a case study of northern Lu 203 well block in the Sichuan Basin[J]. Natural Gas Industry, 2024, 44(8):95-106.
|
[21] |
周优.柿庄南区块煤系地层精细描述与三维地质建模[D].北京:中国地质大学(北京), 2021. ZHOU You.Fine description and 3D geological modeling of coal measures in southern Shizhuang block[D].Beijing:China University of Geosciences (Beijing), 2021.
|
[22] |
伊永祥.沁水盆地柿庄南区块煤层气井生产特征及排采控制研究[D].北京:中国地质大学(北京), 2020. YI Yongxiang.Research on the production characteristics and drainage control of CBM wells in the Shizhuangnan block of Qinshui Basin[D]. Beijing:China University of Geosciences (Beijing), 2020.
|
[23] |
杨延辉, 张鹏豹, 刘忠, 等.沁水盆地南部深层高阶煤层气成藏特征[J].中国石油勘探, 2024, 29(5):107-119.
Yang Yanhui, Zhang Pengbao, Liu Zhong, et al. Gas accumulation characteristics of high-rank coal in deep formations in the southern Qinshui Basin[J]. China Petroleum Exploration, 2024, 29(5):107-119.
|
[24] |
孙强, 孙建平, 张健, 等.沁水盆地南部柿庄南区块煤层气地质特征[J].中国煤炭地质, 2010, 22(6):9-12.
SUN Qiang, SUN Jianping, ZHANG Jian, et al.CBM geological characteristics in Shizhuang south block, southern Qinshui Basin[J].Coal Geology of China, 2010, 22(6):9-12.
|
[25] |
徐最, 陆小霞, 李晨, 等.开发中期煤层气田上市储量评估方法:以柿庄南区块为例[J].中国煤层气, 2023, 20(3):36-40.
XU Zui, LU Xiaoxia, LI Chen, et al.Evaluation method of listed reserves for coalbed methane fields in the middle development stage:based on the Shizhuang south block as an example[J].China Coalbed Methane, 2023, 20(3):36-40.
|
[26] |
LÜ A, AGHIGHI M A, MASOUMI H, et al.The effective stress coefficient of coal:a theoretical and experimental investigation[J].Rock Mechanics and Rock Engineering, 2021, 54(8):3891-3907.
|
[27] |
TAKADA A.The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism[J].Journal of Geophysical Research:Solid Earth, 1994, 99(B7):13563-13573.
|
[28] |
孟召平, 雷钧焕, 王宇恒.基于Griffith强度理论的煤储层水力压裂有利区评价[J].煤炭学报, 2020, 45(1):268-275.
MENG Zhaoping, LEI Junhuan, WANG Yuheng.Evaluation of favorable areas for hydraulic fracturing of coal reservoir based on Griffith strength theory[J].Journal of China Coal Society, 2020, 45(1):268-275.
|
[29] |
HUANG Saipeng, LIU Dameng, YAO Yanbin, et al.Natural fractures initiation and fracture type prediction in coal reservoir under different in-situ stresses during hydraulic fracturing[J].Journal of Natural Gas Science and Engineering, 2017, 43:69-80.
|
[30] |
孙逊, 张士诚, 马新仿, 等.基于高能CT扫描的煤岩水力压裂裂缝扩展研究[J].河南理工大学学报(自然科学版), 2020, 39(1):18-25. SUN Xun, ZHANG Shicheng, MA Xinfang, et al.Study on fractures propagation mechanism in coal hydraulic fracturing based on high-energy CT scanning technique[J].Journal of Henan Polytechnic University (Natural Science), 2020, 39(1):18-25.
|
[31] |
何俊铧, 陈立超, 胡奇, 等.不同原生裂缝壁面特征对煤储层压裂造缝影响的对比分析[J].煤炭学报, 2014, 39(9):1868-1872.
HE Junhua, CHEN Lichao, HU Qi, et al.Comparative analysis for the impact of different natural fracture surface characteristics on CBM fracturing[J].Journal of China Coal Society, 2014, 39(9):1868-1872.
|
[32] |
张士诚, 郭天魁, 周彤, 等.天然页岩压裂裂缝扩展机理试验[J].石油学报, 2014, 35(3):496-503.
ZHANG Shicheng, GUO Tiankui, ZHOU Tong, et al.Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J].Acta Petrolei Sinica, 2014, 35(3):496-503.
|
[33] |
CHEN Shida, ZHANG Yafei, TANG Dazhen, et al.Present-day stress regime, permeability, and fracture stimulations of coal reservoirs in the Qinshui Basin, northern China[J].AAPG Bulletin, 2024, 108(8):1509-1536.
|
[34] |
郑力会, 崔金榜, 聂帅帅, 等.郑X井重复压裂非产水煤层绒囊流体暂堵转向试验[J].钻井液与完井液, 2016, 33(5):103-108.
ZHENG Lihui, CUI Jinbang, NIE Shuaishuai, et al.Temporary plugging diverting test with fuzzy ball fluids in non-water producing coal beds in re-fracturing well Zheng-X[J].Drilling Fluid & Completion Fluid, 2016, 33(5):103-108.
|
[35] |
LIU Xiaoqiang, RASOULI V, GUO Tiankui, et al.Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling[J].Engineering Fracture Mechanics, 2020, 238:107278.
|
[36] |
SIDDHAMSHETTY P, WU Kan, KWON J S I.Optimization of simultaneously propagating multiple fractures in hydraulic fracturing to achieve uniform growth using data-based model reduction[J].Chemical Engineering Research and Design, 2018, 136:675-686.
|
[37] |
MCKENNA J P, BLAZ M S, GREALY M H, et al.Using fracture stress shadows to drive stage spacing[C]//Proceedings of the Unconventional Resources Technology Conference.Austin, Texas, USA:American Association of Petroleum Geologists, 2017.
|