Citation: | HAN Xueting, MENG Shangzhi, LIU Guangjing, REN Zhenyu, TAO Shu, MEN Xinyang, WEI Ziyang. Impact of new coalbed methane wells on old well productivity and its controlling factors: a case study of Shizhuangnan block in Qinshui Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 195-203. doi: 10.11781/sysydz2025010195 |
[1] |
徐凤银, 侯伟, 熊先钺, 等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发, 2023, 50(4): 669-682.
XU Fengyin, HOU Wei, XIONG Xianyue, et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development, 2023, 50(4): 669-682.
|
[2] |
秦勇. 中国深部煤层气地质研究进展[J]. 石油学报, 2023, 44(11): 1791-1811. doi: 10.7623/syxb202311004
QIN Yong. Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica, 2023, 44(11): 1791-1811. doi: 10.7623/syxb202311004
|
[3] |
陈世达, 汤达祯, 侯伟, 等. 深部煤层气地质条件特殊性与储层工程响应[J]. 石油学报, 2023, 44(11): 1993-2006. doi: 10.7623/syxb202311018
CHEN Shida, TANG Dazhen, HOU Wei, et al. Geological particularity and reservoir engineering response of deep coalbed methane[J]. Acta Petrolei Sinica, 2023, 44(11): 1993-2006. doi: 10.7623/syxb202311018
|
[4] |
冯义, 任凯, 刘俊田, 等. 深层煤层气水平井安全钻井技术[J]. 钻采工艺, 2024, 47(3): 33-41. doi: 10.3969/J.ISSN.1006-768X.2024.03.05
FENG Yi, REN Kai, LIU Juntian, et al. Safe drilling technology for deep CBM horizontal wells[J]. Drilling and Production Technology, 2024, 47(3): 33-41. doi: 10.3969/J.ISSN.1006-768X.2024.03.05
|
[5] |
桑树勋, 韩思杰, 周效志, 等. 华东地区深部煤层气资源与勘探开发前景初探[J]. 油气藏评价与开发, 2023, 13(4): 403-415.
SANG Shuxun, HAN Sijie, ZHOU Xiaozhi, et al. Deep coalbed methane resource and its exploration and development prospect in East China[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 403-415.
|
[6] |
孔祥伟, 谢昕, 王存武, 等. 基于灰色关联方法的深层煤层气井压后产能影响地质工程因素评价[J]. 油气藏评价与开发, 2023, 13(4): 433-440.
KONG Xiangwei, XIE Xin, WANG Cunwu, et al. Evaluation of geological engineering factors for productivity of deep CBM well after fracturing based on grey correlation method[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 433-440.
|
[7] |
李小刚, 秦杨, 刘紫微, 等. 微波强化煤层气井压裂开采的物性规律[J]. 特种油气藏, 2024, 31(3): 70-77.
LI Xiaogang, QIN Yang, LIU Ziwei, et al. Physical property law of coalbed methane well fracturing development enhanced by microwave[J]. Special Oil & Gas Reservoirs, 2024, 31(3): 70-77.
|
[8] |
孔祥伟, 谢昕, 王存武. 基于综合可压指数的煤层气水平井压裂分段参数优化[J]. 油气藏评价与开发, 2024, 14(6): 925-932.
KONG Xiangwei, XIE Xin, WANG Cunwu. Optimization of segmented fracturing parameters for coalbed methane horizontal wells based on comprehensive fracability index[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 925-932.
|
[9] |
李可心, 张聪, 李俊, 等. 沁水盆地南部煤层气水平井射孔优化[J]. 新疆石油地质, 2024, 45(5): 581-589.
LI Kexin, ZHANG Cong, LI Jun, et al. Optimization of perforation in CBM horizontal wells in southern Qinshui basin[J]. Xinjiang Petroleum Geology, 2024, 45(5): 581-589.
|
[10] |
段宝江, 孙雨亭, 刘成桢, 等. 柿庄南煤层气低效井区水平井加密技术研究及应用[J]. 江汉大学学报(自然科学版), 2023, 51(2): 90-96.
DUAN Baojiang, SUN Yuting, LIU Chengzhen, et al. Research and application of horizontal well infilling technology in low-efficiency well area of Shizhuang south coalbed methane field[J]. Journal of Jianghan University (Natural Science Edition), 2023, 51(2): 90-96.
|
[11] |
张万春, 郭布民, 孔鹏, 等. 柿庄南煤层气重复压裂裂缝形态反演及效果分析评价[J]. 非常规油气, 2022, 9(1): 119-128.
ZHANG Wanchun, GUO Bumin, KONG Peng, et al. Fracture morphology inversion and effect evaluation of CBM refracturing in southern Shizhuang block[J]. Unconventional Oil & Gas, 2022, 9(1): 119-128.
|
[12] |
李勇, 王延斌, 倪小明, 等. 煤层气低效井成因判识及治理体系构建研究[J]. 煤炭科学技术, 2020, 48(2): 185-193.
LI Yong, WANG Yanbin, NI Xiaoming, et al. Study on identification and control system construction of low efficiency coalbed methane wells[J]. Coal Science and Technology, 2020, 48(2): 185-193.
|
[13] |
陈明, 孙俊义, 王立伟, 等. 大宁—吉县区块深层煤层气井间压窜主控因素分析及防治对策研究[J/OL]. 煤炭科学技术, 1-8[2024-09-16].
CHEN Ming, SUN Junyi, WANG Liwei, et al. Analysis of the main controlling factors of intra-well frac hit between deep coalbed methane in Daning-Jixian block and research on countermeasures to prevent and control it[J/OL]. Coal Science and Technology, 1-8[2024-09-16].
|
[14] |
王喆. 延川南煤层气田压窜井影响因素分析和措施[J]. 中国石油和化工标准与质量, 2022, 42(16): 9-11. doi: 10.3969/j.issn.1673-4076.2022.16.004
WANG Zhe. Analysis and measures of pressure intra-well frac hit in south CBM field[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(16): 9-11. doi: 10.3969/j.issn.1673-4076.2022.16.004
|
[15] |
姚秀田, 苏鑫坤, 郑昕, 等. 特高含水期油藏井网调整开发效果三维物理模拟实验研究[J]. 油气地质与采收率, 2023, 30(1): 139-145.
YAO Xiutian, SU Xinkun, ZHENG Xin, et al. 3D physical simulation experiments of development effects after well pattern adjustment in extra-high water cut reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 139-145.
|
[16] |
王挺, 汪杰, 江厚顺, 等. 页岩水平井水力压裂裂缝扩展及防窜三维地质模拟[J]. 新疆石油地质, 2023, 44(6): 720-728.
WANG Ting, WANG Jie, JIANG Houshun, et al. 3D geological simulation of hydraulic fracture propagation and frac-hit prevention in horizontal shale gas wells[J]. Xinjiang Petroleum Geology, 2023, 44(6): 720-728.
|
[17] |
胡永章, 唐煊赫, 朱海燕, 等. 威荣深层页岩储层水力压裂多井压窜现象及机理[J]. 断块油气田, 2024, 31(5): 851-857.
HU Yongzhang, TANG Xuanhe, ZHU Haiyan, et al. Phenomenon and mechanism of multi-well frac hits hydraulic fracturing in Weirong deep shale reservoir[J]. Fault-Block Oil & Gas Field, 2024, 31(5): 851-857.
|
[18] |
何乐, 袁灿明, 龚蔚. 页岩气井间压窜影响因素分析和防窜对策[J]. 油气藏评价与开发, 2020, 10(5): 63-69.
HE Le, YUAN Canming, GONG Wei. Influencing factors and preventing measures of intra-well frac hit in shale gas[J]. Reservoir Evaluation and Development, 2020, 10(5): 63-69.
|
[19] |
罗志锋, 李建斌, 张楠林, 等. 小井距压裂防窜机理研究与应用[J]. 断块油气田, 2023, 30(4): 593-600.
LUO Zhifeng, LI Jianbin, ZHANG Nanlin, et al. Research and application of anti-channeling mechanism in small well spacing fracturing[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 593-600.
|
[20] |
郑马嘉, 欧志鹏, 伍亚, 等. 深层页岩气井压窜特征与产能维护对策: 以四川盆地泸203井区北部为例[J]. 天然气工业, 2024, 44(8): 95-106. doi: 10.3787/j.issn.1000-0976.2024.08.008
ZHENG Majia, OU Zhipeng, WU Ya, et al. Frac-hit characteristics and productivity maintenance strategies of deep shale gas wells: a case study of northern Lu 203 well block in the Sichuan Basin[J]. Natural Gas Industry, 2024, 44(8): 95-106. doi: 10.3787/j.issn.1000-0976.2024.08.008
|
[21] |
周优. 柿庄南区块煤系地层精细描述与三维地质建模[D]. 北京: 中国地质大学(北京), 2021.
ZHOU You. Fine description and 3D geological modeling of coal measures in southern Shizhuang block[D]. Beijing: China University of Geosciences (Beijing), 2021.
|
[22] |
伊永祥. 沁水盆地柿庄南区块煤层气井生产特征及排采控制研究[D]. 北京: 中国地质大学(北京), 2020.
YI Yongxiang. Research on the production characteristics and drainage control of CBM wells in the Shizhuangnan block of Qinshui Basin[D]. Beijing: China University of Geosciences (Beijing), 2020.
|
[23] |
杨延辉, 张鹏豹, 刘忠, 等. 沁水盆地南部深层高阶煤层气成藏特征[J]. 中国石油勘探, 2024, 29(5): 107-119.
Yang Yanhui, Zhang Pengbao, Liu Zhong, et al. Gas accumulation characteristics of high-rank coal in deep formations in the southern Qinshui Basin[J]. China Petroleum Exploration, 2024, 29(5): 107-119.
|
[24] |
孙强, 孙建平, 张健, 等. 沁水盆地南部柿庄南区块煤层气地质特征[J]. 中国煤炭地质, 2010, 22(6): 9-12. doi: 10.3969/j.issn.1674-1803.2010.06.03
SUN Qiang, SUN Jianping, ZHANG Jian, et al. CBM geological characteristics in Shizhuang south block, southern Qinshui Basin[J]. Coal Geology of China, 2010, 22(6): 9-12. doi: 10.3969/j.issn.1674-1803.2010.06.03
|
[25] |
徐最, 陆小霞, 李晨, 等. 开发中期煤层气田上市储量评估方法: 以柿庄南区块为例[J]. 中国煤层气, 2023, 20(3): 36-40. doi: 10.3969/j.issn.1672-3074.2023.03.009
XU Zui, LU Xiaoxia, LI Chen, et al. Evaluation method of listed reserves for coalbed methane fields in the middle development stage: based on the Shizhuang south block as an example[J]. China Coalbed Methane, 2023, 20(3): 36-40. doi: 10.3969/j.issn.1672-3074.2023.03.009
|
[26] |
LV A, AGHIGHI M A, MASOUMI H, et al. The effective stress coefficient of coal: a theoretical and experimental investigation[J]. Rock Mechanics and Rock Engineering, 2021, 54(8): 3891-3907. doi: 10.1007/s00603-021-02476-1
|
[27] |
TAKADA A. The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B7): 13563-13573. doi: 10.1029/94JB00494
|
[28] |
孟召平, 雷钧焕, 王宇恒. 基于Griffith强度理论的煤储层水力压裂有利区评价[J]. 煤炭学报, 2020, 45(1): 268-275.
MENG Zhaoping, LEI Junhuan, WANG Yuheng. Evaluation of favorable areas for hydraulic fracturing of coal reservoir based on Griffith strength theory[J]. Journal of China Coal Society, 2020, 45(1): 268-275.
|
[29] |
HUANG Saipeng, LIU Dameng, YAO Yanbin, et al. Natural fractures initiation and fracture type prediction in coal reservoir under different in-situ stresses during hydraulic fracturing[J]. Journal of Natural Gas Science and Engineering, 2017, 43: 69-80. doi: 10.1016/j.jngse.2017.03.022
|
[30] |
孙逊, 张士诚, 马新仿, 等. 基于高能CT扫描的煤岩水力压裂裂缝扩展研究[J]. 河南理工大学学报(自然科学版), 2020, 39(1): 18-25.
SUN Xun, ZHANG Shicheng, MA Xinfang, et al. Study on fractures propagation mechanism in coal hydraulic fracturing based on high-energy CT scanning technique[J]. Journal of Henan Polytechnic University (Natural Science), 2020, 39(1): 18-25.
|
[31] |
何俊铧, 陈立超, 胡奇, 等. 不同原生裂缝壁面特征对煤储层压裂造缝影响的对比分析[J]. 煤炭学报, 2014, 39(9): 1868-1872.
HE Junhua, CHEN Lichao, HU Qi, et al. Comparative analysis for the impact of different natural fracture surface characteristics on CBM fracturing[J]. Journal of China Coal Society, 2014, 39(9): 1868-1872.
|
[32] |
张士诚, 郭天魁, 周彤, 等. 天然页岩压裂裂缝扩展机理试验[J]. 石油学报, 2014, 35(3): 496-503.
ZHANG Shicheng, GUO Tiankui, ZHOU Tong, et al. Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica, 2014, 35(3): 496-503.
|
[33] |
CHEN Shida, ZHANG Yafei, TANG Dazhen, et al. Present-day stress regime, permeability, and fracture stimulations of coal reservoirs in the Qinshui Basin, northern China[J]. AAPG Bulletin, 2024, 108(8): 1509-1536. doi: 10.1306/03202422056
|
[34] |
郑力会, 崔金榜, 聂帅帅, 等. 郑X井重复压裂非产水煤层绒囊流体暂堵转向试验[J]. 钻井液与完井液, 2016, 33(5): 103-108.
ZHENG Lihui, CUI Jinbang, NIE Shuaishuai, et al. Temporary plugging diverting test with fuzzy ball fluids in non-water producing coal beds in re-fracturing well Zheng-X[J]. Drilling Fluid & Completion Fluid, 2016, 33(5): 103-108.
|
[35] |
LIU Xiaoqiang, RASOULI V, GUO Tiankui, et al. Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling[J]. Engineering Fracture Mechanics, 2020, 238: 107278. doi: 10.1016/j.engfracmech.2020.107278
|
[36] |
SIDDHAMSHETTY P, WU Kan, KWON J S I. Optimization of simultaneously propagating multiple fractures in hydraulic fracturing to achieve uniform growth using data-based model reduction[J]. Chemical Engineering Research and Design, 2018, 136: 675-686. doi: 10.1016/j.cherd.2018.06.015
|
[37] |
MCKENNA J P, BLAZ M S, GREALY M H, et al. Using fracture stress shadows to drive stage spacing[C]//Proceedings of the Unconventional Resources Technology Conference. Austin, Texas, USA: American Association of Petroleum Geologists, 2017.
|