Volume 47 Issue 2
Mar.  2025
Turn off MathJax
Article Contents
FAN Qi, FU Qiang, GUO Gang, ZHU Zhenyu, PANG Weixin, LI Qingping, ZHUO Haiteng. Research progress, exploration process, and challenges in marine sandy hydrates[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 235-247. doi: 10.11781/sysydz2025020235
Citation: FAN Qi, FU Qiang, GUO Gang, ZHU Zhenyu, PANG Weixin, LI Qingping, ZHUO Haiteng. Research progress, exploration process, and challenges in marine sandy hydrates[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 235-247. doi: 10.11781/sysydz2025020235

Research progress, exploration process, and challenges in marine sandy hydrates

doi: 10.11781/sysydz2025020235
  • Received Date: 2024-07-11
  • Rev Recd Date: 2025-01-03
  • Publish Date: 2025-03-28
  • Natural gas hydrates are a key area of development in marine energy resources. However, the technical and economic barriers for muddy silt gas hydrate exploration in the South China Sea are high, and their resource potential remains controversial. This paper reviews the significant advancements achieved in China, the United States, and Japan over the past 20 years in the exploration of marine sandy hydrates. It discusses three primary hydrate types, i.e., muddy silt pore-filling, muddy silt fracture-filling, and sandy pore-filling hydrates, and summarizes the characteristics of sandy hydrates based on core samples, well logging, and laboratory findings. This paper presents the exploration and evaluation procedures for the "hydrate accumulation system" and discusses the challenges such as non-diagenetic reservoir evaluation, temperature-pressure variations, geomechanics, and pressure-preserved coring. Results reveal that sandy pore-filling hydrates (extendable to silt-sized particles) are currently the only hydrate type with economic value, characterized by high saturation (40% to 90%), high resistivity, strong formation strength, high quartz content (56% to 77%), and higher median particle size (approximately 56 to 87 μm). Those hydrates are typically well-sorted silty deposits in white-gray or black-gray, with a frosted texture and pore structure development. It is recommended to enhance the popularization and application of the "hydrate accumulation system" in the exploration of sandy hydrates and further address the issues in non-diagenetic reservoir evaluation, phase transitions due to temperature-pressure changes, complex geomechanical problems, and pressure-preserved coring technology. In conclusion, a reassessment of hydrate resource value is needed to provide a theoretical and scientific basis for the co-production of natural gas and gas hydrates.

     

  • Author FAN Qi is a Young Editorial Board Member of this journal, and he did not take part in peer review or decision making of this article.
    FAN Qi, FU Qiang, GUO Gang, ZHU Zhenyu, PANG Weixin, LI Qingping and ZHUO Haiteng participated in the research. The manuscript was drafted and revised by FAN Qi. All authors have read the final version of the paper and consented to its submission.
  • loading
  • [1]
    BOSWELL R, SHIPP C, REICHEL T, et al. Prospecting for marine gas hydrate resources[J]. Interpretation, 2016, 4(1): SA13-SA24. doi: 10.1190/INT-2015-0036.1
    [2]
    COLLETT T S. Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 2002, 86(11): 1971-1992.
    [3]
    邵明娟, 王朋飞, 张炜. 日本在天然气水合物产业化进程中面临的能源、法律和政策挑战及对未来工作的部署[M]. 北京: 中国地质调查局地学文献中心, 2021.

    SHAO Mingjuan, WANG Pengfei, ZHANG Wei. Energy, legal and policy challenges in the industrialization of gas hydrates in Japan and deployment of future work[M]. Beijing: Geoscience Documentation Center, China Geological Survey, 2021.
    [4]
    张炜, 邵明娟, 田黔宁, 等. 日本海域天然气水合物研发进展及启示[M]. 北京: 地质出版社, 2018.

    ZHANG Wei, SHAO Mingjuan, TIAN Qianning, et al. Research and development of gas hydrates in waters off Japan and its implications[M]. Beijing: Geology Press, 2018.
    [5]
    FUJII T, NAMIKAWA T, NAKAMIZU M, et al. Modes of occurrence and accumulation mechanism of methane hydrate: result of meti exploratory test wells "Tokai-Oki to Kumano-Nada"[C] //Proceedings 5th International Conference on Gas Hydrates. Trondheim: [s. n. ], 2005: 3041.
    [6]
    周守为, 李清平, 朱军龙, 等. 中国南海天然气水合物开发面临的挑战与思考[J]. 天然气工业, 2023, 43(11): 152-163.

    ZHOU Shouwei, LI Qingping, ZHU Junlong, et al. Challenges and considerations for the development of natural gas hydrates in South China Sea[J]. Natural Gas Industry, 2023, 43(11): 152-163.
    [7]
    宋德坤, 刘乐乐, 王栋. 南海北部天然气水合物赋存区沉积物渗透性敏感规律试验研究[J]. 地学前缘, 2024, 31(6): 405-414.

    SONG Dekun, LIU Lele, WANG Dong. Experimental study on the sensitivity of hydraulic permeability of fine-grained sediments sampled from a gas hydrate distribution area in the northern South China Sea[J]. Earth Science Frontiers, 2024, 31(6): 405-414.
    [8]
    李小洋, 张欣, 田英英, 等. 海洋天然气水合物开采增产新技术可行性研究[J]. 钻采工艺, 2023, 46(5): 87-92.

    LI Xiaoyang, ZHANG Xin, TIAN Yingying, et al. The feasibility study on new technology of marine gas hydrate production enhancement[J]. Drilling & Production Technology, 2023, 46(5): 87-92.
    [9]
    黄鑫, 寇鉴, 毛良杰, 等. 天然气水合物开采立管力学特性研究[J]. 西南石油大学学报(自然科学版), 2023, 45(4): 143-154.

    HUANG Xin, KOU Jian, MAO Liangjie, et al. Mechanical characteristics of natural gas hydrate production riser[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4): 143-154.
    [10]
    王磊. 井液侵入水合物储层井壁力学稳定性分析[J]. 西南石油大学学报(自然科学版), 2023, 45(2): 87-96.

    WANG Lei. Wellbore stability analysis of drilling fluid invading hydrate reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(2): 87-96.
    [11]
    叶瑞杰, 蒋宇静, 张瑞琪, 等. 层间非均质含天然气水合物沉积物力学性质数值模拟研究[J]. 山东科技大学学报(自然科学版), 2024, 43(2): 22-29.

    YE Ruijie, JIANG Yujing, ZHANG Ruiqi, et al. Numerical simulation study on mechanical properties of interlayer heterogeneous natural gas hydrate sediments[J]. Journal of Shandong University of Science and Technology (Natural Science), 2024, 43(2): 22-29.
    [12]
    王祥阜, 邱月, 梁伟, 等. 损伤效应下天然气水合物产气规律模拟研究[J]. 山东科技大学学报(自然科学版), 2023, 42(4): 70-77.

    WANG Xiangfu, QIU Yue, LIANG Wei, et al. Simulation study on gas production law of natural gas hydrate under damage effect[J]. Journal of Shandong University of Science and Technology (Natural Science), 2023, 42(4): 70-77.
    [13]
    JANG J B, WAITE W F, STERN L A. Gas hydrate petroleum systems: what constitute the 'seal'?[J]Interpretation, 2020, 8(2): T231-T248.
    [14]
    FANG Xiangyu, YANG Dianheng, NING Fulong, et al. Experimental study on sand production and coupling response of silty hydrate reservoir with different contents of fine clay during depressurization[J]. Petroleum, 2023, 9(1): 72-82. http://qikan.cqvip.com/Qikan/Article/Detail?id=7109402365
    [15]
    LIU Tianbao, SHI Weiguang, XU Chenlu, et al. Synthesis of mixed methane-ethylene hydrate with ice powder[J]. Unconventional Resources, 2023, 3: 1-6.
    [16]
    陈奎, 王雯娟, 徐万兴, 等. 琼东南盆地中央峡谷"深海一号"大气田周缘成藏条件与滚动勘探成效[J]. 石油实验地质, 2023, 45(5): 994-1006.

    CHEN Kui, WANG Wenjuan, XU Wanxing, et al. Accumulation conditions and rolling exploration results in the periphery of "Deep Sea No. 1"giant gas field in central canyon of Qiongdongnan Basin[J]. Petroleum Geology & Experiment, 2023, 45(5): 994- 1006.
    [17]
    康冬菊, 刘俊东, 李海燕, 等. 南海神狐海域天然气水合物储层参数定量评价方法[J]. 现代地质, 2024, 38(2): 385-397.

    KANG Dongju, LIU Jundong, LI Haiyan, et al. A quantitative evaluation method for the natural gas hydrate reservoir parameters in the Shenhu area, South China Sea[J]. Geoscience, 2024, 38(2): 385-397.
    [18]
    KUANG Zengui, COOK A, REN Jinfeng, et al. A flat-lying transitional free gas to gas hydrate system in a sand layer in the Qiongdongnan Basin of the South China Sea[J]. Geophysical Research Letters, 2023, 50: e2023GL105744.
    [19]
    FLEMINGS P B. Quarterly research performance progress report deepwater methane hydrate characterization and scientific assessment[R]. Austin: U.S. Department of Energy, 2019.
    [20]
    樊奇, 朱振宇, 庞维新, 等. 琼东南盆地水合物富集区储层特征及勘探启示[J]. 地球科学, 2024, 49(4): 1421-1430.

    FAN Qi, ZHU Zhenyu, PANG Weixin, et al. Reservoir characteristics and exploration implications of gas hydrate enrichment area, Qiongdongnan Basin[J]. Earth Science, 2024, 49(4): 1421-1430.
    [21]
    何家雄, 宁子杰, 赵斌, 等. 南海天然气水合物资源勘查战略接替区初步分析与预测[J]. 地球科学, 2022, 47(5): 1549-1568.

    HE Jiaxiong, NING Zijie, ZHAO Bin, et al. Preliminary analysis and prediction of strategic replacement area for gas hydrate exploration in South China Sea[J]. Earth Science, 2022, 47(5): 1549-1568.
    [22]
    FLEMINGS P B, PHILLIPS S C, BOSWELL R, et al. Pressure coring a Gulf of Mexico deep-water turbidite gas hydrate reservoir: initial results from the University of Texas-Gulf of Mexico 2-1(UT-GOM2-1) hydrate pressure coring expedition[J]. AAPG Bulletin, 2020, 104(9): 1847-1876.
    [23]
    Peter Flemings & the GOM2 Team. Deepwater methane hydrate characterization and scientific assessment[R]. U.S. Department of Energy, 2023.
    [24]
    国际地学动态(清洁低碳地质能源)[M]. 北京: 中国地质调查局地学文献中心, 2024.

    International geodynamics (clean and low-carbon geoenergy)[M]. Beijing: Geoscience Documentation Center, China Geological Survey, 2024.
    [25]
    宁伏龙, 王秀娟, 杨胜雄, 等. 海洋天然气水合物成藏需要圈闭吗?[J]. 地球科学, 2022, 47(10): 3876-3879.

    NING Fulong, WANG Xiujuan, YANG Shengxiong, et al. Does marine gas hydrate accumulation need traps?[J]. Earth Science, 2022, 47(10): 3876-3879.
    [26]
    徐旭辉, 周卓明, 宋振响, 等. 油气资源评价方法关键参数研究和资源分布特征: 以中国石化探区"十三五"资源评价为例[J]. 石油实验地质, 2023, 45(5): 832-843.

    XU Xuhui, ZHOU Zhuoming, SONG Zhenxiang, et al. Methods and key parameters for oil and gas resource assessment and distribution characteristics of oil and gas resource: a case study of resource assessment of SINOPEC during the 13th Five-Year Plan period[J]. Petroleum Geology & Experiment, 2023, 45(5): 832-843.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (67) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return