Volume 47 Issue 2
Mar.  2025
Turn off MathJax
Article Contents
LUO Qun, WANG Qianjun, GUI Shiqi, HE Xiaobiao, HU Wanjing, ZHANG Yuejing, WANG Liang, CAO Xuming. Fault-cavity bodies: probable spaces for large-scale hydrocarbon migration and accumulation in non-carbonate rock areas[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 248-260. doi: 10.11781/sysydz2025020248
Citation: LUO Qun, WANG Qianjun, GUI Shiqi, HE Xiaobiao, HU Wanjing, ZHANG Yuejing, WANG Liang, CAO Xuming. Fault-cavity bodies: probable spaces for large-scale hydrocarbon migration and accumulation in non-carbonate rock areas[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 248-260. doi: 10.11781/sysydz2025020248

Fault-cavity bodies: probable spaces for large-scale hydrocarbon migration and accumulation in non-carbonate rock areas

doi: 10.11781/sysydz2025020248
  • Received Date: 2024-06-09
  • Rev Recd Date: 2025-03-05
  • Publish Date: 2025-03-28
  • In carbonate rocks, it is easy to understand that fault-cavity bodies form because they dissolve easily when fluids flow along faults, creating caves. However, non-carbonate rocks are not as easily dissolved by fluids. This raises the question of whether caves still develop along faults in such areas, and if so, whether they can facilitate the migration, accumulation, and enrichment of hydrocarbons. The study aims to demonstrate the existence of large caves along faults in non-carbonate rock areas, which are key spaces for hydrocarbon migration and accumulation. Taking the Chepaizi Uplift in the western Junggar Basin as an example, the internal structures in fault rocks, the distribution and development characteristics of caves, and differential hydrocarbon migration and accumulation were studied through field investigation, core observation, drilling analysis, seismic interpretation, and physical simulation experiments. This study suggests that large cave-like geological bodies, such as fault-cavity bodies, can form along fault cores in non-carbonate rock areas. The void space, formed by the relative displacement of two fault blocks during fault activity, is defined as a fault-cavity body. It can either form as the two fault blocks move along an undulating fault plane (zone), or they separate along the dip direction of the fault. The formation of fault-cavity bodies is not related to dissolution but is instead controlled by fault surface (zone) undulations, strike or dip separation, fault occurrence, and the movement direction of two fault blocks. fault-cavity bodies can be massive in scale and are often found where strike-slip fault occurrence changes, at the intersections of different faults, or in areas of concentrated extensional or transtensional stress with significant dip separation. These fault- cavity bodies can trap hydrocarbons, forming fault-cavity type hydrocarbon reservoirs. The concept of fault-cavity bodies challenges traditional perspectives, suggesting that in extensive non-carbonate rock areas, such as clastic, volcanic or metamorphic rock areas where dissolution effect is minimal, hydrocarbon-rich, large-scale fault-related hydrocarbon reservoirs, similar to those in carbonate rock regions of the Tahe and Shunbei (Fuman) oilfields can exist.

     

  • All authors declare no relevant conflict of interests.
    LUO Qun was responsible for the overall conception and experimental guidance of the paper. WANG Qianjun was responsible for the writing of the paper. GUI Shiqi, HE Xiaobiao, and CAO Xuming participated in the experimental design and preparation. ZHANG Yuejing, HU Wanjing, and WANG Liang completed the experiment. LUO Qun, WANG Qianjun, and HE Xiaobiao participated in the writing and revision of the paper. ZHANG Yuejing, CAO Xuming, HU Wanjing, and WANG Liang participated in and completed data sorting and figure drawing. All authors have read the final version of the paper and consented to its submission.
  • loading
  • [1]
    王彧嫣, 樊大磊, 黄书君, 等. 2022年国内外油气资源形势分析及展望[J]. 中国矿业, 2023, 32(1): 16-22.

    WANG Yuyan, FAN Dalei, HUANG Shujun, et al. Domestic and international oil & gas resources situation analysis and outlook in 2022[J]. China Mining Magazine, 2023, 32(1): 16-22.
    [2]
    罗群, 黄捍东, 庞雄奇, 等. 自然界可能存在的断层体圈闭[J]. 石油勘探与开发, 2004, 31(3): 148-150. doi: 10.3321/j.issn:1000-0747.2004.03.042

    LUO Qun, HUANG Handong, PANG Xiongqi, et al. A kind of possible natural fault petroleum trap[J]. Petroleum Exploration and Development, 2004, 31(3): 148-150. doi: 10.3321/j.issn:1000-0747.2004.03.042
    [3]
    鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355.

    LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355.
    [4]
    焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216.

    JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216.
    [5]
    杨德彬, 鲁新便, 鲍典, 等. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366.

    YANG Debin, LU Xinbian, BAO Dian, et al. New insights into the genetic types and characteristics of the Ordovician marine fault-karst carbonate reservoirs in the northern Tarim Basin[J]. Oil & Gas Geology, 2024, 45(2): 357-366.
    [6]
    WANG Xintong, WANG Jian, CAO Yingchang, et al. Characteristics, formation mechanism and evolution model of Ordovician carbonate fault-controlled reservoirs in the Shunnan area of the Shuntuogole lower uplift, Tarim Basin, China[J]. Marine and Petroleum Geology, 2022, 145: 105878.
    [7]
    卢志强, 马乃拜, 尼加提, 等. 顺北油田深层断溶体内部结构物探表征研究[J]. 内蒙古石油化工, 2022, 48(6): 115-120. doi: 10.3969/j.issn.1006-7981.2022.06.028

    LU Zhiqiang, MA Naibai, NI Jiati, et al. Research and application of fault-karst characterization technology in Shunbei oilfield[J]. Inner Mongolia Petrochemical Industry, 2022, 48(6): 115-120. doi: 10.3969/j.issn.1006-7981.2022.06.028
    [8]
    常少英, 曾溅辉, 徐旭辉, 等. 碳酸盐岩断溶体内部结构识别技术及应用[J]. 石油地球物理勘探, 2022, 57(2): 414-422.

    CHANG Shaoying, ZENG Jianhui, XU Xuhui, et al. Identification technology for internal structures of carbonate fault-karst and its application[J]. Oil Geophysical Prospecting, 2022, 57(2): 414-422.
    [9]
    程洪, 汪彦, 鲁新便. 塔河地区深层碳酸盐岩断溶体圈闭类型及特征[J]. 石油学报, 2020, 41(3): 301-309.

    CHENG Hong, WANG Yan, LU Xinbian. Classifications and characteristics of deep carbonate fault-karst trap in Tahe area[J]. Acta Petrolei Sinica, 2020, 41(3): 301-309.
    [10]
    LU Xinbian, WANG Yan, YANG Debin, et al. Characterization of paleo-karst reservoir and faulted karst reservoir in Tahe Oilfield, Tarim Basin, China[J]. Advances in Geo-Energy Research, 2020, 4(3): 339-348.
    [11]
    SUN Ke, LIU Huiqing, LEUNG J Y, et al. Investigation on water- drive performance of a fault-karst carbonate reservoir under different well patterns and injection-production modes based on 2D visualized physical models[J]. Journal of Petroleum Science and Engineering, 2022, 218: 110925.
    [12]
    SHI Wenyang, CHENG Jian, LIU Yongchuan, et al. Pressure transient analysis of horizontal wells in multibranched fault-karst carbonate reservoirs: model and application in SHB oilfield[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111167. doi: 10.1016/j.petrol.2022.111167
    [13]
    HU Xiangyang, ZHENG Wenbo, ZHAO Xiangyuan, et al. Quantitative characterization of deep fault-karst carbonate reservoirs: a case study of the Yuejin block in the Tahe oilfield[J]. Energy Geoscience, 2023, 4(3): 100153. doi: 10.1016/j.engeos.2022.100153
    [14]
    张长建, 杨德彬, 蒋林, 等. 塔里木盆地塔河北部"过溶蚀残留型"断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383.

    ZHANG Changjian, YANG Debin, JIANG Lin, et al. Characteristics and origin of over-dissolution residual fault-karst reservoirs in the northern Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2024, 45(2): 367-383.
    [15]
    杨德彬, 鲁新便, 高志前, 等. 塔北深层海相碳酸盐岩断溶体成藏认识及油藏特征[J]. 地学前缘, 2023, 30(4): 43-50.

    YANG Debin, LU Xinbian, GAO Zhiqian, et al. Hydrocarbon accumulation and reservoir characteristics of deep marine fault-karst reservoirs in northern Tarim Basin[J]. Earth Science Frontiers, 2023, 30(4): 43-50.
    [16]
    曹立迎, 林会喜, 曹飞, 等. 基于数值试井的断溶体油藏储集体动态表征[J]. 油气地质与采收率, 2023, 30(6): 150-159.

    CAO Liying, LIN Huixi, CAO Fei, et al. Dynamic characterization of reservoir spaces in fault-karst reservoir based on numerical well testing[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6): 150-159.
    [17]
    段太忠, 张文彪, 何治亮, 等. 塔里木盆地顺北油田超深断溶体深度学习地质建模方法[J]. 石油与天然气地质, 2023, 44(1): 203-212.

    DUAN Taizhong, ZHANG Wenbiao, HE Zhiliang, et al. Deep learning-based geological modeling of ultra-deep fault-karst reservoirs in Shunbei oilfield, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(1): 203-212.
    [18]
    王威, 凡睿. 四川盆地北部须家河组"断缝体"气藏特征及勘探意义[J]. 成都理工大学学报(自然科学版), 2019, 46(5): 541-548.

    WANG Wei, FAN Rui. Characteristics of Xujiahe Formation fault-fracture reservoirs in the northern Sichuan Basin and its exploration significance[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2019, 46(5): 541-548.
    [19]
    何发岐, 梁承春, 陆骋, 等. 鄂尔多斯盆地南缘过渡带致密—低渗油藏断缝体的识别与描述[J]. 石油与天然气地质, 2020, 41(4): 710-718.

    HE Faqi, LIANG Chengchun, LU Cheng, et al. Identification and description of fault-fracture bodies in tight and low permeability reservoirs in transitional zone at the south margin of Ordos Basin[J]. Oil & Gas Geology, 2020, 41(4): 710-718.
    [20]
    何发岐, 齐荣, 袁春艳, 等. 鄂尔多斯盆地南部地区断裂构造与油气成藏关系再认识: 以彬长地区为例[J]. 地球科学, 2024, 49(11): 4082-4097.

    HE Faqi, Qi Rong, YUAN Chunyan, et al. Further understanding of relationship between fault characteristics and hydrocarbon accumulation in Binchang area, Ordos Basin[J]. Earth Science, 2024, 49(11): 4082-4097.
    [21]
    REN Junjie, FANG Ningyuan, ZHENG Qiao, et al. Semi-analytical model of a multi-wing fractured vertical well in linear composite reservoirs with a leaky fault[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107143.
    [22]
    刘振峰, 刘忠群, 郭元岭, 等. "断缝体"概念、地质模式及其在裂缝预测中的应用: 以四川盆地川西坳陷新场地区须家河组二段致密砂岩气藏为例[J]. 石油与天然气地质, 2021, 42(4): 973-980.

    LIU Zhenfeng, LIU Zhongqun, GUO Yuanling, et al. Concept and geological model of fault-fracture reservoir and their application in seismic fracture prediction: a case study on the Xu 2 Member tight sandstone gas pool in Xinchang area, Western Sichuan Depression in Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 973-980.
    [23]
    胡张明, 胡明毅, 喻意, 等. 断缝体识别及储层发育模式: 以准噶尔盆地玛湖凹陷玛东地区百口泉组为例[J]. 断块油气田, 2024, 31(2): 283-288.

    HU Zhangming, HU Mingyi, YU Yi, et al. Fault-fracture body identification and reservoir development model: taking Baikouquan Formation in Madong area of Mahu Sag, Junggar Basin as an example[J]. Fault-Block Oil & Gas Field, 2024, 31(2): 283-288.
    [24]
    何发岐, 李俊鹿, 高一龙, 等. 鄂尔多斯盆地西南缘断缝体油藏开发特征与潜力[J]. 油气藏评价与开发, 2024, 14(5): 667-677.

    HE Faqi, LI Junlu, GAO Yilong, et al. Development characteristics and potential of fault-fracture reservoir in southwest margin of Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 667-677.
    [25]
    尹帅, 田涛, 李俊鹿, 等. 鄂尔多斯盆地西南缘延长组断缝体特征及对油藏的调控作用[J]. 油气地质与采收率, 2024, 31(1): 1-12.

    YIN Shuai, TIAN Tao, LI Junlu, et al. Fault-fracture body characteristics and their effect on hydrocarbon distribution of Yanchang Formation in southwestern margin of Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(1): 1-12.
    [26]
    李俊鹿, 刘小虎, 梁臣, 等. 断缝体油藏二元四区模型提出及应用[C]//2021油气田勘探与开发国际会议论文集(上册). 青岛: 中国石油大学(华东), 2021: 7.

    LI Junlu, LIU Xiaohu, LIANG Chen, et al. Building and application of 2-structure 4-area model for fault-fracture body reservoir[C] // 2021 International Field Exploration and Development Conference. Qingdao: China University of Petroleum (East China), 2021: 7.
    [27]
    汪勇. 车排子地区石炭系火山岩裂缝成因特征及控油作用研究[D]. 青岛: 中国石油大学(华东), 2019: 22-48.

    WANG Yong. The genetic characteristics of volcanic fractures and its oil-controlling effect in carboniferous of Chepaizi area[D]. Qingdao: China University of Petroleum (East China), 2019: 22-48.
    [28]
    宋明水, 吕明久, 赵乐强, 等. 准噶尔盆地车排子凸起油气资源潜力与成藏模式[J]. 中国石油勘探, 2016, 21(3): 83-91.

    SONG Mingshui, LV Mingjiu, ZHAO Leqiang, et al. Hydrocarbon potential and accumulation model in Chepaizi Uplift, Junggar Basin[J]. China Petroleum Exploration, 2016, 21(3): 83-91.
    [29]
    王彦君. 准噶尔盆地多期构造控藏作用及深层油气勘探[D]. 南京: 南京大学, 2020: 18-36.

    WANG Yanjun. Controlling of multiple-phase tectonics on petroleum accumulation in the Junggar Basin: implications for deep-seated petroleum exploration[D]. Nanjing: Nanjing University, 2020: 18-36.
    [30]
    董大伟. 准噶尔盆地车排子凸起断层特征及对油气成藏的控制[D]. 青岛: 中国石油大学(华东), 2015: 6-59.

    DONG Dawei. Fault characteristics of Chepaizi Uplift in Junggar Basin and its control to oil-gas accumulation[D]. Qingdao: China University of Petroleum (East China), 2015: 6-59.
    [31]
    LUO Qun. Concept, principle, model and significance of the fault controlling hydrocarbon theory[J]. Petroleum Exploration and Development, 2010, 37(3): 316-324.
    [32]
    罗群, 白新华. 断裂控烃理论与实践—断裂活动与油气聚集研究[M]. 武汉: 中国地质大学出版社, 1998: 89-94.

    LUO Qun, BAI Xinhua. Fault hydrocarbon control theory and oil and gas exploration practice-fault activity and oil and gas accumulation research[M]. Wuhan: China University of Geosciences Press, 1998: 89-94.
    [33]
    蒋有录, 刘华. 断裂沥青带及其油气地质意义[J]. 石油学报, 2010, 31(1): 36-41.

    JIANG Youlu, LIU Hua. Fault asphalt zone and its significance in petroleum geology[J]. Acta Petrolei Sinica, 2010, 31(1): 36-41.
    [34]
    范婕, 蒋有录, 张奎华, 等. 断裂带结构的识别方法及其控藏作用[J]. 地质论评, 2021, 67(S1): 89-90.

    FAN Jie, JIANG Youlu, ZHANG Kuihua, et al. The method of distinguishing fault zone structure and its control of reservoir[J]. Geological Review, 2021, 67(S1): 89-90.
    [35]
    罗群, 王千军, 杨威, 等. 走滑断裂内部结构渗透差异特征及其输导控藏模式[J]. 地球科学, 2023, 48(6): 2342-2360.

    LUO Qun, WANG Qianjun, YANG Wei, et al. Internal structural units, differential characteristics of permeability and their transport, shielding and reservoir control modes of strike-slip faults[J]. Earth Science, 2023, 48(6): 2342-2360.
    [36]
    宋佳佳, 孙建孟, 王敏, 等. 断层内部结构研究进展[J]. 地球物理学进展, 2018, 33(5): 1956-1966.

    SONG Jiajia, SUN Jianmeng, WANG Min, et al. Research progress in the internal structure of the fault[J]. Progress in Geophysics, 2018, 33(5): 1956-1966.
    [37]
    苏圣民, 蒋有录. 含油气盆地断裂带结构特征及其与油气运聚关系[J]. 中国石油大学学报(自然科学版), 2021, 45(4): 32-41.

    SU Shengmin, JIANG Youlu. Fault zone structures and its relationship with hydrocarbon migration and accumulation in petroliferous basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(4): 32-41.
    [38]
    吴小奇, 任新成, 刘德志, 等. 准噶尔盆地沙湾凹陷东部原油地球化学特征和来源[J]. 石油实验地质, 2023, 45(4): 646-655. doi: 10.11781/sysydz202304646

    WU Xiaoqi, REN Xincheng, LIU Dezhi, et al. Geochemical characteristics and source of crude oil from the eastern Shawan Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 646-655. doi: 10.11781/sysydz202304646
    [39]
    尹艳芳, 常象春, 徐佑德, 等. 准噶尔盆地车排子凸起中生界稠油油源分析[J]. 特种油气藏, 2024, 31(1): 39-47.

    YIN Yanfang, CHANG Xiangchun, XU Youde, et al. Mesozoic heavy oil source analysis of Chepaizi Uplift in Junggar Basin[J]. Special Oil & Gas Reservoirs, 2024, 31(1): 39-47.
    [40]
    熊婷, 刘宇, 陈文利, 等. 准噶尔盆地沙湾凹陷西斜坡上乌尔禾组油藏成藏模式新认识[J]. 新疆石油地质, 2024, 45(2): 151-162.

    XIONG Ting, LIU Yu, CHEN Wenli, et al. New understanding of hydrocarbon accumulation model of Upper Wuerhe Formation on western slope of Shawan Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2024, 45(2): 151-162.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (52) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return