Volume 47 Issue 2
Mar.  2025
Turn off MathJax
Article Contents
LI Qi, CHEN Ruiqian, SHANG Fei, LI Ling, BAI Xin. Pore structure and fractal characteristics of shale reservoirs in Jurassic Lianggaoshan Formation, northeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 323-335. doi: 10.11781/sysydz2025020323
Citation: LI Qi, CHEN Ruiqian, SHANG Fei, LI Ling, BAI Xin. Pore structure and fractal characteristics of shale reservoirs in Jurassic Lianggaoshan Formation, northeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 323-335. doi: 10.11781/sysydz2025020323

Pore structure and fractal characteristics of shale reservoirs in Jurassic Lianggaoshan Formation, northeastern Sichuan Basin

doi: 10.11781/sysydz2025020323
  • Received Date: 2024-07-02
  • Rev Recd Date: 2025-02-10
  • Publish Date: 2025-03-28
  • The Jurassic Lianggaoshan Formation in the northeastern Sichuan Basin is a key exploration target for shale oil. However, due to limited exploration in this area, the shale reservoir characteristics remain unclear. Experiments such as X-ray diffraction mineral analysis, scanning electron microscopy analysis, high-pressure mercury intrusion, and low-temperature nitrogen adsorption were conducted to systematically study the storage space types and fractal features of the Lianggaoshan Formation shale reservoir. The primary mineral composition of the Lianggaoshan Formation reservoir in the northeastern Sichuan Basin is clay minerals, with an average content of 51.57%, followed by feldspar and quartz minerals at an average of 47.11%, while carbonate minerals are scarce, averaging 2.69%. The dominant storage space types mainly include interlayer pores of clay minerals, intergranular pores between quartz and feldspar, and micro-fractures. The low-temperature nitrogen adsorption curve of the Lianggaoshan Formation shale aligns with type Ⅳ in the classification system of the International Union of Pure and Applied Chemistry, indicating slit-type pores. Based on the morphology of mercury intrusion curves and reservoir physical properties, the reservoir is divided into four types. From type Ⅰ to type Ⅳ, drainage pressure and median pressure increase, whereas maximum mercury saturation decreases, leading to enhanced reservoir heterogeneity. The "FHH"model calculations show that the pore surface fractal dimension (DN1) is greater than the pore structure fractal dimension (DN2), indicating that the pore surface exhibits greater complexity than the internal pore structure. The average fractal dimension D1 of large pores, calculated using the water saturation method, averages 2.991 2, while that of small pores (D2) averages 2.679 2. The larger pores have a fractal dimension closer to 3 and exhibit a more concentrated distribution, indicating that highly heterogeneous large pores contribute more significantly to the reservoir. Correlation analysis shows that there is a correlation between D and the contents of minerals (quartz and clay minerals) as well as pore-throat struture parameters, proving that large pores are the main contributers to the shale reservoir space in the study area. Through qualitative and quantitative analyses, this paper conducts a reservoir evaluation of the Lianggaoshan Formation shale in the northeastern Sichuan Basin, offering insights for the subsequent evaluation and selection of favorable exploration intervals in this area.

     

  • Author CHEN Ruiqian is a Young Editorial Board Member of this journal, and she did not take part in peer review or decision making of this article.
    The manuscript was drafted and revised by LI Qi and CHEN Ruiqian. The experimental operation and data analysis were completed by LI Qi, LI Ling, and BAI Xin, while SHANG Fei provided sample and data support. All authors have read the final version of the paper and consented to its submission.
  • loading
  • [1]
    王世谦, 陈更生, 黄先平. 四川盆地油气资源潜力及重点勘探领域[J]. 石油学报, 2005, 26(S1): 97-101.

    WANG Shiqian, CHEN Gengsheng, HUANG Xianping. Petroleum resource potential and major exploration areas in Sichuan Basin[J]. Acta Petrolei Sinica, 2005, 26(S1): 97-101.
    [2]
    王世谦, 胡素云, 董大忠. 川东侏罗系: 四川盆地亟待重视的一个致密油气新领域[J]. 天然气工业, 2012, 32(12): 22-29.

    WANG Shiqian, HU Suyun, DONG Dazhong. Jurassic tight oil & gas resources in East Sichuan Basin: a new exploration target[J]. Natural Gas Industry, 2012, 32(12): 22-29.
    [3]
    何文渊, 何海清, 王玉华, 等. 川东北地区平安1井侏罗系凉高山组页岩油重大突破及意义[J]. 中国石油勘探, 2022, 27(1): 40-49.

    HE Wenyuan, HE Haiqing, WANG Yuhua, et al. Major breakthrough and significance of shale oil of the Jurassic Lianggaoshan Formation in well Ping'an 1 in northeastern Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(1): 40-49.
    [4]
    胡东风, 李真祥, 魏志红, 等. 四川盆地北部地区巴中1HF井侏罗系河道砂岩油气勘探突破及意义[J]. 天然气工业, 2023, 43(3): 1-11.

    HU Dongfeng, LI Zhenxiang, WEI Zhihong, et al. Breakthrough in oil and gas exploration of Jurassic channel sandstone in well Bazhong 1HF in northern Sichuan Basin and its significance[J]. Natural Gas Industry, 2023, 43(3): 1-11.
    [5]
    邹娟, 乐园, 金涛, 等. 川中地区侏罗系致密砂岩储集层成因及"甜点"预测[J]. 新疆石油地质, 2018, 39(5): 555-560.

    ZOU Juan, LE Yuan, JIN Tao, et al. Genesis and sweet spot prediction of Jurassic tight sandstone reservoir in central Sichuan Basin[J]. Xinjiang Petroleum Geology, 2018, 39(5): 555-560.
    [6]
    MANDELBROT B B. Fractals: form, chance and dimension[M]. New York: Freeman W H and Co., 1977.
    [7]
    李小明, 王亚蓉, 吝文, 等. 湖北荆门探区五峰组—龙马溪组深层页岩微观孔隙结构与分形特征[J]. 天然气地球科学, 2022, 33(4): 629-641.

    LI Xiaoming, WANG Yarong, LIN Wen, et al. Micro-pore structure and fractal characteristics of deep shale from Wufeng Formation to Longmaxi Formation in Jingmen exploration area, Hubei Province[J]. Natural Gas Geoscience, 2022, 33(4): 629-641.
    [8]
    王斌, 过敏, 施泽进, 等. 川东南地区志留系石牛栏组海相页岩储层孔隙结构特征及油气地质意义[J/OL]. 成都理工大学学报(自然科学版), (2024-08-21)[2024-10-27]. http://kns.cnki.net/kcms/detail/51.1634.N.20240821.1330.002.html.

    WANG Bin, GUO Min, SHI Zejin, et al. Characteristics of shale pore structure and its oil and gas geological significance of the Shiniulan Formation, southeast Sichuan Basin[J/OL]. Journal of Chengdu University of Technology (Science & Technology Edition), (2024-08-21)[2024-10-27]. http://kns.cnki.net/kcms/detail/51.1634.N.20240821.1330.002.html.
    [9]
    杨鑫翊, 王民, 白雪峰, 等. 川东北地区侏罗系凉高山组页岩储集空间特征及页岩油可动性探索[J]. 石油科学通报, 2024, 9(2): 196-212.

    YANG Xinyi, WANG Min, BAI Xuefeng, et al. Reservoir space characteristics and exploration of shale oil mobility of the Jurassic Lianggaoshan Formation shale in the northeastern Sichuan Basin[J]. Petroleum Science Bulletin, 2024, 9(2): 196-212.
    [10]
    王道军, 陈超, 刘珠江, 等. 四川盆地复兴地区侏罗系纹层型页岩油气富集主控因素[J]. 石油实验地质, 2024, 46(2): 319-332. doi: 10.11781/sysydz202402319

    WANG Daojun, CHEN Chao, LlU Zhujiang, et al. Main controlling factors for oil and gas enrichment in Jurassic laminated shale in Fuxing area of Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(2): 319-332. doi: 10.11781/sysydz202402319
    [11]
    李楠, 洪海涛, 李国辉, 等. 四川盆地高陡构造区凉高山组页岩油气地质特征[J]. 天然气勘探与开发, 2022, 45(4): 86-95.

    LI Nan, HONG Haitao, LI Guohui, et al. Geological characteristics of shale oil and gas of Lianggaoshan Formation in high-steep structural zone, Sichuan Basin[J]. Natural Gas Exploration and Development, 2022, 45(4): 86-95.
    [12]
    郭彤楼. 多旋回盆地叠合—复合控藏在常规非常规天然气勘探中的实践[J]. 地学前缘, 2022, 29(6): 109-119.

    GU0 Tonglou. Superimposition and composition control on hydrocarbon reservoirs in multi-cycle basins: concept and practice in conventional and unconventional natural gas explorations[J]. Earth Science Frontiers, 2022, 29(6): 109-119.
    [13]
    成大伟, 张志杰, 洪海涛, 等. 四川盆地东部侏罗系凉高山组沉积、物源及盆山关系[J]. 石油勘探与开发, 2023, 50(2): 1-11.

    CHENG Dawei, ZHANG Zhijie, HONG Haitao, et al. Sedimentary and provenance characteristics and the basin-mountain relationship of the Jurassic Lianggaoshan Formation in eastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(2): 1-11.
    [14]
    王羽, 金婵, 汪丽华, 等. 应用氩离子抛光—扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试, 2015, 34(3): 278-285.

    WANG Yu, JIN Chan, WANG Lihua, et al. Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J]. Rock And Mineral Analysis, 2015, 34(3): 278-285.
    [15]
    赵毅楠. 川南地区龙马溪组海相富有机质页岩储层岩石学特征及评价[D]. 成都: 成都理工大学, 2017.

    ZHAO Yinan. Petrological characteristics and evaluation of marine organic shale reservoirs in Longmaxi Formation, southern Sichuan[D]. Chengdu: Chengdu University of Technology, 2017.
    [16]
    SCHIEBER J. Common themes in the formation and preservation of intrinsic porosity in shales and mudstones: illustrated with examples across the Phanerozoic[C]//SPE Unconventional Gas Conference. Pittsburgh: SPE, 2010.
    [17]
    THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
    [18]
    PFEIFER P, AVNIR D. Chemistry in noninteger dimensions between two and three.I.Fractal theory of heterogeneous surfaces[J]. The Journal of Chemical Physics, 1983, 79(7): 3358-3565.
    [19]
    贺承祖, 华明琪. 储层孔隙结构的分形几何描述[J]. 石油与天然气地质, 1998, 19(1): 17-25.

    HE Chengzu, HUA Mingqi. Fractal geometry description of reservoir pore structure[J]. Oil & Gas Geology, 1998, 19(1): 17-25.
    [20]
    彭军, 韩浩东, 夏青松, 等. 深埋藏致密砂岩储层微观孔隙结构的分形表征及成因机理: 以塔里木盆地顺托果勒地区柯坪塔格组为例[J]. 石油学报, 2018, 39(7): 775-791.

    PENG Jun, HAN Haodong, XIA Qingsong, et al. Fractal characterization and genetic mechanism of micro-pore structure in deeply buried tight sandstone reservoirs: a case study of Kalpintag Formation in Shuntuoguole area, Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(7): 775-791.
    [21]
    赵会涛, 郭英海, 杜小伟, 等. 鄂尔多斯盆地高桥地区本溪组砂岩储层微观孔隙多重分形特征[J]. 地质科技通报, 2020, 39(6): 175-184.

    ZHAO Huitao, GUO Yinghai, DU Xiaowei, et al. Micro-pore multifractal characteristics of Benxi Formation sandstone reservoir in Gaoqiao area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 175-184.
    [22]
    DANIEL J K, ROSS R, BUSTIN M. Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1): 51-75.
    [23]
    赖锦, 王贵文, 郑懿琼, 等. 低渗透碎屑岩储层孔隙结构分形维数计算方法: 以川中地区须家河组储层41块岩样为例[J]. 东北石油大学学报, 2013, 37(1): 1-7.

    LAI Jin, WANG Guiwen, ZHENG Yiqiong, et al. Method For calculating the fractal dimension of the pore structure of low permeability reservoirs: a case study on the Xujiahe Formation reservoir in central Sichuan Basin[J]. Journal of Northeast Petroleum University, 2013, 37(1): 1-7.
    [24]
    张婷, 徐守余, 杨珂. 储层微观孔隙结构分形维数应用[J]. 大庆石油学院学报, 2010, 34(3): 44-47.

    ZHANG Ting, XU Shouyu, YANG Ke. Application of fractal dimension of micro-pore structure[J]. Journal of Daqing Petroleum Institute, 2010, 34(3): 44-47.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (113) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return