Citation: | WANG Qi, SUN Yonghe, GONG Lei, WANG Yougong, CHANG Deshuang, ZHANG Wanfu. Main controlling factors on oblique extensional deformations in multiphase rift basins: insights from analogue experiments[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 441-450. doi: 10.11781/sysydz2025020441 |
[1] |
GIBA M, WALSH J J, NICOL A. Segmentation and growth of an obliquely reactivated normal fault[J]. Journal of Structural Geology, 2012, 39: 253-267.
|
[2] |
FOSSEN H, KHANI H F, FALEIDE J I, et al. Post-Caledonian extension in the west Norway-northern North Sea region: the role of structural inheritance[J]. Geological Society, London, Special Publications, 2017, 439(1): 465-486.
|
[3] |
DENG C, FOSSEN H, GAWTHORPE R L, et al. Influence of fault reactivation during multiphase rifting: the Oseberg area, northern North Sea rift[J]. Marine and Petroleum Geology, 2017, 86: 1252-1272. doi: 10.1016/j.marpetgeo.2017.07.025
|
[4] |
童亨茂, 范彩伟, 孟令箭, 等. 中国东—南部裂陷盆地断裂系统复杂性的表现形式及成因机制: 以南堡凹陷和涠西南凹陷为例[J]. 地质学报, 2018, 92(9): 1753-1765.
TONG Hengmao, FAN Caiwei, MENG Lingjian, et al. Manifestation and origin mechanism of the fault system complexity in rift basins in eastern-southern China: case study of the Nanbu and Weixinan sags[J]. Acta Geologica Sinica, 2018, 92(9): 1753-1765.
|
[5] |
PONGWAPEE S, MORLEY C K, WON-IN K. Impact of pre-existing fabrics and multi-phase oblique extension on Cenozoic fault patterns, Wichianburi sub-basin of the Phetchabun rift, Thailand[J]. Journal of Structural Geology, 2019, 118: 340-361. doi: 10.1016/j.jsg.2018.11.012
|
[6] |
张继标, 邓尚, 韩俊, 等. 多期构造应力控制走滑断控储层发育机理与差异性研究: 以塔里木盆地顺北地区为例[J]. 石油实验地质, 2024, 46(4): 775-785.
ZHANG Jibiao, DENG Shang, HAN Jun, et al. Study on development mechanism and variability of strike-slip fault-controlled reservoirs regulated by multi-stage structural stress: a case study of the Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2024, 46(4): 775-785.
|
[7] |
杨宪彰, 能源, 徐振平, 等. 塔里木盆地三大构造旋回油气成藏特征[J]. 现代地质, 2024, 38(2): 287-299.
YANG Xianzhang, NENG Yuan, XU Zhenping, et al. Characteristics of the hydrocarbon accumulation formed through the three structural cycles in Tarim Basin[J]. Geoscience, 2024, 38(2): 287-299.
|
[8] |
丁文龙, 王垚, 张子游, 等. 页岩储层构造裂缝活动期次及开启性研究进展与展望[J]. 地学前缘, 2024, 31(5): 1-16.
DING Wenlong, WANG Yao, ZHANG Ziyou, et al. Tectonic fracturing and fracture initiation in shale reservoirs: research progress and outlooks[J]. Earth Science Frontiers, 2024, 31(5): 1-16.
|
[9] |
吕古贤, 张宝林, 焦建刚, 等. 新华夏构造体系地块的多层次"构造隆起—拆离凹陷"特征: 大兴安岭造山带例析[J]. 现代地质, 2024, 38(4): 853-864.
LÜ Guxian, ZHANG Baolin, JIAO Jiangang, et al. Multi-order characteristics of the "tectonic uplift-detachment depression" in blocks of the Neocathaysian tectonic system: a study of the Greater Khinganling Orogenic Belt[J]. Geoscience, 2024, 38(4): 853-864.
|
[10] |
WITHJACK M O, JAMISON W R. Deformation produced by oblique rifting[J]. Tectonophysics, 1986, 126(2/4): 99-124.
|
[11] |
BELLAHSEN N, FOURNIER M, D'ACREMONT E, et al. Fault reactivation and rift localization: northeastern gulf of Aden margin[J]. Tectonics, 2006, 25(1): TC1007.
|
[12] |
刘露, 孙永河, 陈昌, 等. 南堡凹陷4号构造带断裂活化及其对油气成藏的控制作用[J]. 石油勘探与开发, 2022, 49(4): 716-727.
LIU Lu, SUN Yonghe, CHEN Chang, et al. Fault reactivation in No.4 structural zone and its control on oil and gas accumulation in Nanpu Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2022, 49(4): 716-727.
|
[13] |
TRON V, BRUN J P. Experiments on oblique rifting in brittle-ductile systems[J]. Tectonophysics, 1991, 188(1/2): 71-84.
|
[14] |
AGOSTINI A, CORTI G, ZEOLI A, et al. Evolution, pattern, and partitioning of deformation during oblique continental rifting: inferences from lithospheric-scale centrifuge models[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(11). doi: 10.1029/2009GC002676.
|
[15] |
ZWAAN F, SCHREURS G, ROSENAU M. Rift propagation in rotational versus orthogonal extension: insights from 4D analogue models[J]. Journal of Structural Geology, 2020, 135: 103946. doi: 10.1016/j.jsg.2019.103946
|
[16] |
ZWAAN F, SCHREURS G. Analogue modeling of continental rifting: an overview[M]//PERON-PINVIDIC G. Continental rifted margins 1: definition and methodology. Hoboken: Wiley, 2022: 309-343.
|
[17] |
ZWAAN F, SCHREURS G. Analog models of lithospheric-scale rifting monitored in an X-ray CT scanner[J]. Tectonics, 2023, 42(3): e2022TC007291.
|
[18] |
HENZA A A, WITHJACK M O, SCHLISCHE R W. Normal-fault development during two phases of non-coaxial extension: an experimental study[J]. Journal of Structural Geology, 2010, 32(11): 1656-1667.
|
[19] |
LELOUP P H, LACASSIN R, TAPPONNIER P, et al. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(1/4): 3-84.
|
[20] |
任健, 吕丁友, 陈兴鹏, 等. 渤海东部先存构造斜向拉伸作用及其石油地质意义[J]. 石油勘探与开发, 2019, 46(3): 530-541.
REN Jian, LYU Dingyou, CHEN Xingpeng, et al. Oblique extension of pre-existing structures and its control on oil accumulation in eastern Bohai Sea[J]. Petroleum Exploration and Development, 2019, 46(3): 530-541.
|
[21] |
刘露. 渤海海域蓬莱25-31区块走滑—斜向伸展断裂变形机制及对油气成藏控制作用研究[D]. 大庆: 东北石油大学, 2022.
LIU Lu. Study on the deformation mechanism of strike-slip and oblique extension faults and its control on hydrocarbon accumulation in Penglai 25-31 area, Bohai Sea[D]. Daqing: Northeast Petroleum University, 2022.
|
[22] |
MA Xiao. The characteristics of combined strike-slip and extension fault system in western offshore Bohai Bay Basin and its control on basin fillings[J]. Beijing: China University of Geosciences (Beijing), 2020.
|
[23] |
WANG Qi, SUN Yonghe, ZHANG Wanfu, et al. Cenozoic evolution and deformation in the eastern and western depression of the Liaohe Subbasin, Bohai Bay Basin: insights from seismic data[J]. Basin Research, 2023, 35(5): 1880-1907.
|
[24] |
邱旭明, 陈伟, 李鹤永, 等. 苏北盆地走滑构造与复杂断块油气成藏[J]. 石油实验地质, 2023, 45(3): 393-401.
QIU Xuming, CHEN Wei, LI Heyong, et al. strike-slip structures and hydrocarbon accumulation in complex fault blocks in Subei Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 393-401.
|
[25] |
左亮, 能源, 黄少英, 等. 哈拉哈塘地区超深层走滑断裂构造变形特征及其石油地质意义[J]. 现代地质, 2023, 37(2): 270-282.
ZUO Liang, NENG Yuan, HUANG Shaoyin, et al. Deformation characteristics of ultra-deep glide faults in the Halahatang area and their petroleum geological significance[J]. Geoscience, 2023, 37(2): 270-282.
|
[26] |
张仲培, 徐勤琪, 刘士林, 等. 塔里木盆地巴麦地区东段北东向走滑断裂体系特征及油气地质意义[J]. 石油实验地质, 2023, 45(4): 761-769.
ZHANG Zhongpei, XU Qinqi, LIU Shilin, et al. Characteristics of NE strike-slip fault system in the eastern section of Bachu-Maigaiti area, Tarim Basin and its oil-gas geological significance[J]. Petroleum Geology & Experiment, 2023, 45(4): 761-769.
|
[27] |
张波. 济阳坳陷孤西潜山带构造演化及其对油气差异富集的控制[J]. 油气地质与采收率, 2024, 31(2): 29-38.
ZHANG Bo. Tectonic evolution and its control on differential hydrocarbon enrichment of Guxi Buried Hill, Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(2): 29-38.
|
[28] |
王启超, 刘光祥, 吴疆, 等. 鄂尔多斯盆地旬宜地区下古生界走滑断裂特征与油气勘探意义[J]. 石油实验地质, 2024, 46(2): 342-353.
WANG Qichao, LIU Guangxiang, WU Jiang, et al. Characteristics of Lower Paleozoic strike-slip faults and their significance for oil and gas exploration in Xunyi-Yijun area, Ordos Basin[J]. Petroleum Geology & Experiment, 2024, 46(2): 342-353.
|
[29] |
马海陇, 蒋林, 姜应兵, 等. 塔里木盆地先巴扎地区走滑断裂特征及石油地质意义[J]. 断块油气田, 2024, 31(2): 266-275.
MA Hailong, JIANG Lin, JIANG Yingbing, et al. Characteristics of strike-slip faults in Xianbazha area of Tarim Basin and its petroleum geological significance[J]. Fault-Block Oil & Gas Field, 2024, 31(2): 266-275.
|
[30] |
张希晨, 刘晓波, 杜长江, 等. 松辽盆地王府断陷边界正断层差异变形特征及成因机制[J]. 石油实验地质, 2023, 45(3): 455-465.
ZHANG Xichen, LIU Xiaobo, DU Changjiang, et al. Differential deformation characteristics and genetic mechanism of boundary normal faults in Wangfu Fault Depression, Songliao Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 455-465.
|
[31] |
KATZ Y, WEINBERGER R, AYDIN A. Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah[J]. Journal of Structural Geology, 2004, 26(3): 491-501.
|
[32] |
SCHREURS G. Fault development and interaction in distributed strike-slip shear zones: an experimental approach[J]. Geological Society, London, Special Publications, 2003, 210(1): 35-52.
|
[33] |
WILCOX RONALD E, HARDING T P, SEELY D R. Basic wrench tectonics[J]. AAPG Bulletin, 1973, 57(1): 74-96.
|
[34] |
KEEP M, MCCLAY K R. Analogue modelling of multiphase rift systems[J]. Tectonophysics, 1997, 273(3/4): 239-270.
|
[35] |
BONINI M, SOURIOT T, BOCCALETTI M, et al. Successive orthogonal and oblique extension episodes in a rift zone: laboratory experiments with application to the Ethiopian Rift[J]. Tectonics, 1997, 16(2): 347-362.
|
[36] |
JACKSON C A L, ROTEVATN A. 3D seismic analysis of the structure and evolution of a salt-influenced normal fault zone: a test of competing fault growth models[J]. Journal of Structural Geology, 2013, 54: 215-234.
|
[37] |
张关龙, 王越. 准噶尔盆地早二叠世构造—沉积格局及石油地质意义[J]. 油气地质与采收率, 2023, 30(1): 35-48.
ZHANG Guanlong, WANG Yue. Tectono-sedimentary framework of Early Permian in Junggar Basin and its petroleum geological significance[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 35-48.
|
[38] |
姜鹍鹏, 刘亚雷, 周新桂, 等. 塔里木盆地柯坪断隆早古生代断裂构造特征: 以柯坪南地区为例[J]. 现代地质, 2024, 38(5): 1248-1257.
JIANG Kunpeng, LIU Yalei, ZHOU Xingui, et al. Fault structural characteristics of the Early Paleozoic in the Keping Fault-Uplift, Tarim Basin: a case study in the southern Keping area[J]. Geoscience, 2024, 38(5): 1248-1257.
|
[39] |
冯军. 走滑断层形成演化主控因素物理模拟研究及应用[D]. 大庆: 东北石油大学, 2022.
FENG Jun. Physical analog modeling of main controlling factors of strike-slip fault formation and evolution and its application[D]. Daqing: Northeast Petroleum University, 2022.
|
[40] |
童亨茂, 孟令箭, 蔡东升, 等. 裂陷盆地断层的形成和演化: 目标砂箱模拟实验与认识[J]. 地质学报, 2009, 83(6): 759-774.
TONG Hengmao, MENG Lingjian, CAI Dongsheng, et al. Fault formation and evolution in rift basins: sandbox modeling and cognition[J]. Acta Geologica Sinica, 2009, 83(6): 759-774.
|
[41] |
REBER J E, COOKE M L, DOOLEY T P. What model material to use?A review on rock analogs for structural geology and tectonics[J]. Earth-Science Reviews, 2020, 202: 103107.
|
[42] |
代兰, 邬光辉, 陈鑫, 等. 共轭走滑断裂形成演化的控制因素及物理模拟实验[J]. 新疆石油地质, 2023, 44(1): 43-50.
DAI Lan, WU Guanghui, CHEN Xin, et al. Controlling factors and physical simulation experiments on formation and evolution of conjugate strike-slip faults[J]. Xinjiang Petroloeum Geology, 2023, 44(1): 43-50.
|
[43] |
隆辉, 曾溅辉, 刘亚洲, 等. 可视化三维物理模拟实验技术在油气成藏研究中的应用: 以塔里木盆地顺北地区S53-2井为例[J]. 石油实验地质, 2024, 46(5): 1110-1122. doi: 10.11781/sysydz2024051110
LONG Hui, ZENG Jianhui, LIU Yazhou, et al. Application of visual 3D physical simulation experiment technology in oil and gas accumulation research: a case study of well S53-2 in Shunbei area of Tarim Basin[J]. Petroleum Geology & Experiment, 2024, 46(5): 1110-1122. doi: 10.11781/sysydz2024051110
|
[44] |
PANIEN M, SCHREURS G, PFIFFNER A. Mechanical behaviour of granular materials used in analogue modelling: insights from grain characterisation, ring-shear tests and analogue experiments[J]. Journal of Structural Geology, 2006, 28(9): 1710-1724.
|