Volume 47 Issue 3
May  2025
Turn off MathJax
Article Contents
YANG Shufan, SHI Wenbin, LIU Zhujiang, CHEN Chao, WANG Daojun, LIU Xiaojing, AO Mingchong. Shale sedimentary environments and their controlling factors in Lianggaoshan Formation of Fuxing area, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 504-516. doi: 10.11781/sysydz2025030504
Citation: YANG Shufan, SHI Wenbin, LIU Zhujiang, CHEN Chao, WANG Daojun, LIU Xiaojing, AO Mingchong. Shale sedimentary environments and their controlling factors in Lianggaoshan Formation of Fuxing area, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 504-516. doi: 10.11781/sysydz2025030504

Shale sedimentary environments and their controlling factors in Lianggaoshan Formation of Fuxing area, Sichuan Basin

doi: 10.11781/sysydz2025030504
  • Received Date: 2024-04-22
  • Rev Recd Date: 2025-03-10
  • Publish Date: 2025-05-28
  • Taking the shale in the second member of the Jurassic Lianggaoshan Formation (Liang 2) in the Fuxing area of the Sichuan Basin as the research object, this study employed geochemical and sedimentary analysis to systematically investigate the paleoenvironmental characteristics of the shale in the study area during the sedimentary period and their controlling effects on shale quality. Sedimentary models for the shale were established. The results showed that the shale in the Lianggaoshan Formation was deposited in a freshwater to brackish water environment with a paleo-water depth of 4.9 to 39.4 m, averaging 17.2 m. The paleo-productivity level was high with an average bio-barium content of 567.24 μg/g. The overall environment was anaerobic and reducing, and the climate was warm and humid in general. The total organic carbon (TOC) content of the shale in the Lianggaoshan Formation was controlled by paleo-water depth, paleosalinity, paleoproductivity, and paleo-water redox environment. Higher TOC content was positively correlated with water depth, salinity, productivity, and warm and humid climate. Under redox conditions, minor differences in reducing environments had little impact on TOC content. During the sedimentary period of the lower sub-member of Liang 2, the upper gas layers had a deeper water body, higher paleoproductivity, and a warmer, more humid paleoclimate compared to the lower gas layers, resulting in richer organic matter accumulation. Based on these findings, two types of shale sedimentary models were established for shale in the lower sub-member of the Liang 2 in the study area: (1) As the lower gas layers deposited, under freshwater to brackish water, semi-humid to semi-arid climate, moderate paleoproductivity, and anaerobic-reducing conditions, fair to medium-quality shale was mainly deposited. (2) As the upper gas layers deposited, under freshwater to brackish water, warm and humid climate, moderate to high paleoproductivity, and anaerobic-reducing conditions, medium to high-quality shale was primarily deposited.

     

  • All authors declare no relevant conflict of interests.
    The study was designed by YANG Shufan, SHI Wenbin, LIU Zhujiang, CHEN Chao, WANG Daojun, and LIU Xiaojing. The manuscript was drafted and revised by YANG Shufan, WANG Daojun, LIU Xiaojing, and AO Mingchong. All authors have read the final version of the paper and consented to its submission.
  • loading
  • [1]
    邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12.

    ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12.
    [2]
    吴凯, 高娟琴, 解古巍, 等. 鄂尔多斯盆地三叠系延长组长7段页岩气储层特征及其勘探开发前景[J]. 石油实验地质, 2024, 46(6): 1298-1311. doi: 10.11781/sysydz2024061298

    WU Kai, GAO Juanqin, XIE Guwei, et al. Characteristics of Chang 7 shale gas reservoirs in Triassic Yanchang Formation of Ordos Basin and its exploration and development prospects[J]. Petroleum Geology & Experiment, 2024, 46(6): 1298-1311. doi: 10.11781/sysydz2024061298
    [3]
    孙迪, 谢小敏, 屈洋, 等. 塔里木盆地柯克亚地区侏罗系湖相烃源岩地球化学特征: 对古环境和有机质富集的指示意义[J]. 石油实验地质, 2024, 46(6): 1312-1322. doi: 10.11781/sysydz2024061312

    SUN Di, XIE Xiaomin, QU Yang, et al. Geochemical characteristics of Jurassic lacustrine source rocks in Kekeya area, Tarim Basin: implications for paleoenvironments and organic matter enrichment[J]. Petroleum Geology & Experiment, 2024, 46(6): 1312-1322. doi: 10.11781/sysydz2024061312
    [4]
    胡东风, 魏志红, 刘若冰, 等. 四川盆地拔山寺向斜泰页1井页岩油气重大突破及意义[J]. 中国石油勘探, 2021, 26(2): 21-32.

    HU Dongfeng, WEI Zhihong, LIU Ruobing, et al. Major breakthrough of shale oil and gas in well Taiye 1 in Bashansi syncline in the Sichuan Basin and its significance[J]. China Petroleum Exploration, 2021, 26(2): 21-32.
    [5]
    胡东风, 魏志红, 刘若冰, 等. 湖相页岩油气富集主控因素与勘探潜力: 以四川盆地涪陵地区侏罗系为例[J]. 天然气工业, 2021, 41(8): 113-120.

    HU Dongfeng, WEI Zhihong, LIU Ruobing, et al. Enrichment control factors and exploration potential of lacustrine shale oil and gas: a case study of Jurassic in the Fuling area of the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(8): 113-120.
    [6]
    魏志红, 刘若冰, 魏祥峰, 等. 四川盆地复兴地区陆相页岩油气勘探评价与认识[J]. 中国石油勘探, 2022, 27(1): 111-119.

    WEI Zhihong, LIU Ruobing, WEI Xiangfeng, et al. Exploration evaluation and recognition of continental shale oil and gas in Fuxing area, Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(1): 111-119.
    [7]
    王道军, 陈超, 刘珠江, 等. 四川盆地复兴地区侏罗系纹层型页岩油气富集主控因素[J]. 石油实验地质, 2024, 46(2): 319-332. doi: 10.11781/sysydz202402319

    WANG Daojun, CHEN Chao, LIU Zhujiang, et al. Main controlling factors for oil and gas enrichment in Jurassic laminated shale in Fuxing area of Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(2): 319-332. doi: 10.11781/sysydz202402319
    [8]
    何文渊, 冯子辉, 张金友, 等. 松辽盆地北部古龙凹陷古页8HC井地质剖面特征[J]. 油气藏评价与开发, 2022, 12(1): 1-9.

    HE Wenyuan, FENG Zihui, ZHANG Jinyou, et al. Characteristics of geological section of Well-GY8HC in Gulong Sag, northern Songliao Basin[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(1): 1-9.
    [9]
    倪敏婕, 祝贺暄, 何文军, 等. 准噶尔盆地玛湖凹陷风城组沉积环境与沉积模式分析[J]. 现代地质, 2023, 37(5): 1194-1207.

    NI Minjie, ZHU Hexuan, HE Wenjun, et al. Depositional environment and sedimentary model of the Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Geoscience, 2023, 37(5): 1194-1207.
    [10]
    刘鑫, 尚婷, 田景春, 等. 鄂尔多斯盆地镇北地区延长组长4+5段沉积期古环境条件及意义[J]. 地质学报, 2021, 95(11): 3501-3518.

    LIU Xin, SHANG Ting, TIAN Jingchun, et al. Paleo-sedimentary environmental conditions and its significance of Chang 4+5 Member of Triassic Yanchang Formation in the Zhenbei area, Ordos Basin, NW China[J]. Acta Geologica Sinica, 2021, 95(11): 3501-3518.
    [11]
    周德华, 孙川翔, 刘忠宝, 等. 川东北地区大安寨段陆相页岩气藏地质特征[J]. 中国石油勘探, 2020, 25(5): 32-42.

    ZHOU Dehua, SUN Chuanxiang, LIU Zhongbao, et al. Geological characteristics of continental shale gas reservoir in the Jurassic Da'anzhai Member in the northeastern Sichuan Basin[J]. China Petroleum Exploration, 2020, 25(5): 32-42.
    [12]
    魏祥峰, 黄静, 李宇平, 等. 元坝地区大安寨段陆相页岩气富集高产主控因素[J]. 中国地质, 2014, 41(3): 970-981.

    WEI Xiangfeng, HUANG Jing, LI Yuping, et al. The main factors controlling the enrichment and high production of Da'anzhai Member continental shale gas in Yuanba area[J]. Geology in China, 2014, 41(3): 970-981.
    [13]
    朱彤. 四川盆地陆相页岩油气富集主控因素及类型[J]. 石油实验地质, 2020, 42(3): 345-354. doi: 10.11781/sysydz202003345

    ZHU Tong. Main controlling factors and types of continental shale oil and gas enrichment in Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 345-354. doi: 10.11781/sysydz202003345
    [14]
    刘皓天, 李雄, 万云强, 等. 陆相页岩气形成条件及勘探开发潜力: 以川东涪陵北地区侏罗系东岳庙段为例[J]. 海相油气地质, 2020, 25(2): 148-154.

    LIU Haotian, LI Xiong, WAN Yunqiang, et al. Formation conditions and exploration and development potential of continental shale gas: a case of Dongyuemiao Member of the Jurassic in north Fuling area, eastern Sichuan Basin[J]. Marine Origin Petroleum Geology, 2020, 25(2): 148-154.
    [15]
    林俊峰, 郝芳, 胡海燕, 等. 廊固凹陷沙河街组烃源岩沉积环境与控制因素[J]. 石油学报, 2015, 36(2): 163-173.

    LIN Junfeng, HAO Fang, HU Haiyan, et al. Depositional environment and controlling factors of source rock in the Shahejie Formation of Langgu Sag[J]. Acta Petrolei Sinica, 2015, 36(2): 163-173.
    [16]
    门玉澎, 余谦, 戚明辉, 等. 大巴山前缘五峰组—龙马溪组干酪根碳同位素特征与有机质类型[J]. 沉积与特提斯地质, 2018, 38(1): 82-88.

    MEN Yupeng, YU Qian, QI Minghui, et al. Carbon isotopes and organic matter types in the kerogens from the Wufeng Formation-Longmaxi Formation in the frontal areas of the Daba mountains[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(1): 82-88.
    [17]
    陈聪, 龙祖烈, 石创, 等. 白云凹陷烃源岩生烃特征及天然气成因[J]. 中国海上油气, 2025, 37(2): 70-81.

    CHEN Cong, LONG Zulie, SHI Chuang, et al. Characteristics of hydrocarbon generation and genesis of natural gas from source rocks in Baiyun Sag[J]. China Offshore Oil and Gas, 2025, 37(2): 70-81.
    [18]
    唐云凤, 伊帆, 吴驰华. 湖泊硼含量和盐度关系模拟实验研究[J]. 盐湖研究, 2010, 18(2): 14-21.

    TANG Yunfeng, YI Fan, WU Chihua. Simulation experiment of relationship between the boron content and salinity in the lake[J]. Journal of Salt Lake Research, 2010, 18(2): 14-21.
    [19]
    王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报, 2017, 35(6): 1265-1273.

    WANG Feng, LIU Xuanchun, DENG Xiuqin, et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1265-1273.
    [20]
    陈能, 邱彬焕, 张杰, 等. 沉积成因Sr/Ba指示的福建潮控海湾全新世沉积环境及海平面意义[J]. 海洋地质与第四纪地质, 2024, 44(5): 95-106.

    CHEN Neng, QIU Binhuan, ZHANG Jie, et al. Holocene sedimentary environment and sea level significance of sedimentogenic Sr/Ba in Fujian tidal bays[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 95-106.
    [21]
    蔡嵩, 彭光荣, 郑金云, 等. 珠江口盆地白云西凹古近纪沉积古环境重建及其油气地质意义[J]. 海洋地质与第四纪地质, 2025, 45(2): 133-145.

    CAI Song, PENG Guangrong, ZHENG Jinyun, et al. Paleogene sedimentary paleoenvironmental reconstruction and its petroleum geological significance in western Baiyun Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 133-145.
    [22]
    金芸芸, 李艳然, 李圯, 等. 陆相断陷咸化湖盆细粒沉积岩特征及沉积环境: 以泌阳凹陷核桃园组H3Ⅲ亚段为例[J]. 断块油气田, 2024, 31(2): 289-298.

    JIN Yunyun, LI Yanran, LI Yi, et al. Characteristics and sedimentary environment of fine-grained sedimentary rocks in continental rift-subsidence saline lacustrine sag: a case study of H3Ⅲ submember of Hetaoyuan Formation in Biyang Sag[J]. Fault-Block Oil & Gas Field, 2024, 31(2): 289-298.
    [23]
    张涛, 王琳霖, 廖慧鸿, 等. 沉积盆地古水深恢复方法与研究进展[J]. 沉积与特提斯地质, 2024, 44(3): 582-599.

    ZHANG Tao, WANG Linlin, LIAO Huihong, et al. Methods and research progress of paleo-water depth reconstruction in sedimentary basins[J]. Sedimentary Geology and Tethyan Geology, 2024, 44(3): 582-599.
    [24]
    裴健翔, 金秋月, 范代军, 等. 珠江口盆地顺德凹陷始新世古气候古环境重建及烃源岩发育模式[J]. 石油勘探与开发, 2025, 52(2): 306-319.

    PEI Jianxiang, JIN Qiuyue, FAN Daijun, et al. Paleoclimate, paleoenvironment and source rock development model of Eocene in Shunde Sag, Pearl River Mouth Basin, China[J]. Petroleum Exploration and Development, 2025, 52(2): 306-319.
    [25]
    黄兴, 杨海风, 王飞龙, 等. 渤海湾盆地渤中凹陷西南部沙三段富有机质泥岩沉积环境及形成机理[J]. 天然气地球科学, 2022, 33(12): 2032-2048.

    HUANG Xing, YANG Haifeng, WANG Feilong, et al. Sedimentary environment and formation mechanism of organic-rich mudstone in the third member of Shahejie Formation in the southwestern Bozhong Sag, Bohai Bay Basin[J]. Natural Gas Geoscience, 2022, 33(12): 2032-2048.
    [26]
    刘兵兵, 马东正, 秦臻, 等. 准噶尔盆地吉木萨尔南部中上二叠统沉积古环境分析: 来自泥页岩生物标志化合物和元素地球化学方面的证据[J]. 天然气地球科学, 2022, 33(10): 1571-1584.

    LIU Bingbing, MA Dongzheng, QIN Zhen, et al. Analysis of sedimentary paleoenvironment of middle and upper Permian in southern Jimsar, Junggar Basin: evidence from biomarkers and elemental geochemistry of mudstone[J]. Natural Gas Geoscience, 2022, 33(10): 1571-1584.
    [27]
    刘鑫, 郝芳, 柳卓, 等. 川南自贡和泸州地区五峰组—龙马溪组一段页岩有机质富集机制[J]. 中国石油大学学报(自然科学版), 2024, 48(6): 1-14.

    LIU Xin, HAO Fang, LIU Zhuo, et al. Mechanism of organic matter enrichment from Wufeng-1st member in Longmaxi Formation shale in Zigong and Luzhou areas of the southern Sichuan Basin[J]. Journal of China University of Petroleum(Edition of Natural Science), 2024, 48(6): 1-14.
    [28]
    韩盛博. 滇东北地区五峰组—龙马溪组下段页岩黄铁矿发育特征及其页岩气意义[D]. 徐州: 中国矿业大学, 2021.

    HAN Shengbo. Development characteristics of shale pyrite in the lower segment of Wufeng Formation-Longmaxi Formation in northeastern Yunnan and its shale gas significance[D]. Xuzhou: China University of Mining and Technology, 2021.
    [29]
    雍茹男, 孙诗, 陈安清, 等. 上扬子北缘晚二叠世吴家坪期海洋氧化还原环境重建[J]. 沉积学报, 2024, 42(6): 2066-2078.

    YONG Runan, SUN Shi, CHEN AnQing, et al. Reconstruction of ocean redox environment during the Late Permian Wuchiapingian, northern margin of Upper Yangtze[J]. Acta Sedimentologica Sinica, 2024, 42(6): 2066-2078.
    [30]
    张艳妮, 李荣西, 席胜利, 等. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩沉积环境及有机质富集机制[J]. 中南大学学报(自然科学版), 2022, 53(9): 3401-3417.

    ZHANG Yanni, LI Rongxi, XI Shengli, et al. Sedimentary environments and organic matter enrichment mechanism of Ordovician Wulalike Formation shale, western Ordos Basin[J]. Journal of Central South University(Science and Technology), 2022, 53(9): 3401-3417.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (12) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return