Volume 47 Issue 3
May  2025
Turn off MathJax
Article Contents
JIANG Chengzhou, WANG Guiwen, SONG Lianteng, HUANG Liliang, WANG Song, ZHANG Yilin, HUANG Yuyue, FAN Xuqiang. Quantitative fluorescence techniques and their applications in shale oil reservoir research: a case study of Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 634-644. doi: 10.11781/sysydz2025030634
Citation: JIANG Chengzhou, WANG Guiwen, SONG Lianteng, HUANG Liliang, WANG Song, ZHANG Yilin, HUANG Yuyue, FAN Xuqiang. Quantitative fluorescence techniques and their applications in shale oil reservoir research: a case study of Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 634-644. doi: 10.11781/sysydz2025030634

Quantitative fluorescence techniques and their applications in shale oil reservoir research: a case study of Permian Fengcheng Formation in Mahu Sag, Junggar Basin

doi: 10.11781/sysydz2025030634
  • Received Date: 2024-07-17
  • Rev Recd Date: 2025-04-06
  • Publish Date: 2025-05-28
  • The shale oil reservoirs of the Permian Fengcheng Formation in the Mahu Sag of the Junggar Basin are characterized by a source and reservoir integration. Their formation process is affected by various factors, including sedimentation, diagenesis, and organic matter evolution, resulting in highly complex source rock properties and reservoir characteristics. Currently, the effects of inorganic mineral development and organic matter evolution on reservoir and shale oil properties remain unclear. To address these issues, this study extends the application of quantitative fluorescence (QF) techniques, which are widely used in conventional reservoir research, to continental shale oil reservoirs. Techniques such as quantitative grain fluorescence on extract (QGF-E) and total scanning fluorescence (TSF) were utilized. By combining QGF-E analysis and rock pyrolysis, it was found that free hydrocarbon (S1) was positively correlated with QGF-E intensity, and their variation range was significant. This indicated that oil saturation was mainly controlled by S1. Under the same testing conditions, the normalized TSF spectra's maximum intensity and two-dimensional nuclear magnetic resonance (2D NMR) experimental results showed that the differences in shale oil density (API gravity) were related to the adsorption of hydroxyl-rich heavy organic matter by clay minerals. Higher clay mineral content was found to adsorb more organic matter. The crude oil maturity index (R1) further indicated that the differences in bio-precursors under the original depositional environment and the variations in pore types and structures after diagenetic alteration were key factors affecting the properties of shale oil in the reservoir. These analytical techniques and methods serve as a bridge connecting different parameters, facilitating a deeper understanding of the characteristics of the shale oil reservoir and providing valuable references for the exploration and development of unconventional oil and gas resources.

     

  • All authors declare no relevant conflict of interests.
    The manuscript was drafted and revised by JIANG Chengzhou. WANG Guiwen, HUANG Liliang, and JIANG Chengzhou were responsible for the overall conceptualization and data analysis of the manuscript. The experiment was designed by SONG Lianteng. JIANG Chengzhou, WANG Song, HUANG Yuyue, ZHANG Yilin, and FAN Xuqiang participated in figure drawing. All authors have read the final version of the paper and consented to its submission.
  • loading
  • [1]
    邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399.

    ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: on unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399.
    [2]
    朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264.

    ZHU Rukai, LI Mengying, YANG Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264.
    [3]
    金之钧, 王冠平, 刘光祥, 等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 2021, 42(7): 821-835.

    JIN Zhijun, WANG Guanping, LIU Guangxiang, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7): 821-835.
    [4]
    张宇, 杜垚, 刘耘, 等. 四川盆地侏罗系大安寨段湖相页岩油气基本特征及勘探方向[J]. 中国地质, 2022, 49(1): 51-65.

    ZHANG Yu, DU Yao, LIU Yun, et al. Basic characteristics and exploration direction of lacustrine shale oil and gas in Da'anzhai Member of Jurassic in Sichuan Basin[J]. Geology in China, 2022, 49(1): 51-65.
    [5]
    张少敏, 操应长, 朱如凯, 等. 湖相细粒混合沉积岩岩石类型划分: 以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 地学前缘, 2018, 25(4): 198-209.

    ZHANG Shaomin, CAO Yingchang, ZHU Rukai, et al. Lithofacies classification of fine-grained mixed sedimentary rocks in the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Earth Science Frontiers, 2018, 25(4): 198-209.
    [6]
    葸克来, 李克, 操应长, 等. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式[J]. 石油勘探与开发, 2020, 47(6): 1244-1255.

    XI Kelai, LI Ke, CAO Yingchang, et al. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1244-1255.
    [7]
    何文渊, 蒙启安, 张金友. 松辽盆地古龙页岩油富集主控因素及分类评价[J]. 大庆石油地质与开发, 2021, 40(5): 1-12.

    HE Wenyuan, MENG Qi'an, ZHANG Jinyou. Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 1-12.
    [8]
    SONNENBERG S A, PRAMUDITO A. Petroleum geology of the giant Elm Coulee field, Williston Basin[J]. AAPG Bulletin, 2009, 93(9): 1127-1153. doi: 10.1306/05280909006
    [9]
    LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. doi: 10.2110/jsr.2009.092
    [10]
    王小军, 王婷婷, 曹剑. 玛湖凹陷风城组碱湖烃源岩基本特征及其高效生烃[J]. 新疆石油地质, 2018, 39(1): 9-15.

    WANG Xiaojun, WANG Tingting, CAO Jian. Basic characteristics and highly efficient hydrocarbon generation of alkaline-lacustrine source rocks in Fengcheng Formation of Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 9-15.
    [11]
    李长志, 郭佩, 柯先启, 等. 火山活动影响下的碱湖优质烃源岩成因及其对页岩油气勘探和开发的启示[J]. 石油与天然气地质, 2021, 42(6): 1423-1434.

    LI Changzhi, GUO Pei, KE Xianqi, et al. Genesis of high-quality source rocks in volcano-related alkaline lakes and implications for the exploration and development of shale oil and gas[J]. Oil & Gas Geology, 2021, 42(6): 1423-1434.
    [12]
    宋永, 杨智峰, 何文军, 等. 准噶尔盆地玛湖凹陷二叠系风城组碱湖型页岩油勘探进展[J]. 中国石油勘探, 2022, 27(1): 60-72.

    SONG Yong, YANG Zhifeng, HE Wenjun, et al. Exploration progress of alkaline lake type shale oil of the Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2022, 27(1): 60-72.
    [13]
    徐正建, 刘洛夫, 王铁冠, 等. 鄂尔多斯盆地陇东地区上三叠统长7湖相致密油成藏动力分析[J]. 矿物岩石地球化学通报, 2017, 36(4): 637-649.

    XU Zhengjian, LIU Luofu, WANG Tieguan, et al. Analysis of the accumulation force of Chang 7 lacustrine tight oil of the Permian Triassic in the Longdong area of Ordos Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(4): 637-649.
    [14]
    王琳, 赵孟军, 孟庆洋, 等. 柴达木盆地英西地区中深层油气成藏过程分析[J]. 天然气地球科学, 2017, 28(12): 1846-1854.

    WANG Lin, ZHAO Mengjun, MENG Qingyang, et al. Analysis of hydrocarbon accumulation process in middle-deep reservoirs of Yingxi area, Qaidam Basin[J]. Natural Gas Geoscience, 2017, 28(12): 1846-1854.
    [15]
    刘可禹, 鲁雪松, 桂丽黎, 等. 储层定量荧光技术及其在油气成藏研究中的应用[J]. 地球科学, 2016, 41(3): 373-384.

    LIU Keyu, LU Xuesong, GUI Lili, et al. Quantitative fluorescence techniques and their applications in hydrocarbon accumulation studies[J]. Earth Science, 2016, 41(3): 373-384.
    [16]
    LIU Nian, QIU Nansheng, CHANG Jian, et al. Hydrocarbon migration and accumulation of the Suqiao buried-hill zone in Wen'an Slope, Jizhong Subbasin, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2017, 86: 512-525. doi: 10.1016/j.marpetgeo.2017.05.040
    [17]
    LIU Keyu, EADINGTON P, MIDDLETON H, et al. Applying quantitative fluorescence techniques to investigate petroleum charge history of sedimentary basins in Australia and Papuan New Guinea[J]. Journal of Petroleum Science and Engineering, 2007, 57(1/2): 139-151.
    [18]
    李振明, 邱楠生, 刘念, 等. 利用定量荧光技术表征厚层源岩层系的油气运聚机制: 以渤海湾盆地廊固凹陷沙河街组四段为例[J]. 石油学报, 2019, 40(10): 1158-1171.

    LI Zhenming, QIU Nansheng, LIU Nian, et al. Applying quantitative fluorescence techniques to characterize mechanism of hydrocarbon migration and accumulation in thick source strata: a case study of member 4 of Shahejie Formation, Langgu Sag in Bohai Bay Basin[J]. Acta Petrolei Sinica, 2019, 40(10): 1158-1171.
    [19]
    田雨, 刘可禹, 蒲秀刚, 等. 荧光光谱技术在页岩油地质评价中的应用[J]. 石油学报, 2022, 43(6): 816-828.

    TIAN Yu, LIU Keyu, PU Xiugang, et al. Application of fluorescence spectroscopy in geological evaluation of shale oil[J]. Acta Petrolei Sinica, 2022, 43(6): 816-828.
    [20]
    LIU Bo, BAI Longhui, CHI Yaao, et al. Geochemical characterization and quantitative evaluation of shale oil reservoir by two-dimensional nuclear magnetic resonance and quantitative grain fluorescence on extract: a case study from the Qingshankou Formation in southern Songliao Basin, Northeast China[J]. Marine and Petroleum Geology, 2019, 109: 561-573. doi: 10.1016/j.marpetgeo.2019.06.046
    [21]
    张水昌, 张斌, 王晓梅, 等. 松辽盆地古龙页岩油富集机制与常规—非常规油有序分布[J]. 石油勘探与开发, 2023, 50(5): 911-923.

    ZHANG Shuichang, ZHANG Bin, WANG Xiaomei, et al. Gulong shale oil enrichment mechanism and orderly distribution of conventional-unconventional oils in the Cretaceous Qingshankou Formation, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2023, 50(5): 911-923.
    [22]
    支东明, 唐勇, 何文军, 等. 准噶尔盆地玛湖凹陷风城组常规—非常规油气有序共生与全油气系统成藏模式[J]. 石油勘探与开发, 2021, 48(1): 38-51.

    ZHI Dongming, TANG Yong, HE Wenjun, et al. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Exploration and Development, 2021, 48(1): 38-51.
    [23]
    王剑, 刘金, 潘晓慧, 等. 吉木萨尔凹陷芦草沟组页岩油生烃母质及其生烃机理[J]. 新疆石油地质, 2024, 45(3): 253-261.

    WANG Jian, LIU Jin, PAN Xiaohui, et al. Precursor and mechanism of hydrocarbon generation for shale oil in Lucaogou Formation, Jimsar Sag[J]. Xinjiang Petroleum Geology, 2024, 45(3): 253-261.
    [24]
    JIANG Chengzhou, WANG Guiwen, SONG Lianteng, et al. Identification of fluid types and their implications for petroleum exploration in the shale oil reservoir: a case study of the Fengcheng Formation in the Mahu Sag, Junggar Basin, Northwest China[J]. Marine and Petroleum Geology, 2023, 147: 105996. doi: 10.1016/j.marpetgeo.2022.105996
    [25]
    WANG Song, WANG Guiwen, HUANG Liliang, et al. Logging evaluation of lamina structure and reservoir quality in shale oil reservoir of Fengcheng Formation in Mahu Sag, China[J]. Marine and Petroleum Geology, 2021, 133: 105299. doi: 10.1016/j.marpetgeo.2021.105299
    [26]
    XIA Liuwen, CAO Jian, STVEKEN E E, et al. Unsynchronized evolution of salinity and pH of a Permian alkaline lake influenced by hydrothermal fluids: a multi-proxy geochemical study[J]. Chemical Geology, 2020, 541: 119581. doi: 10.1016/j.chemgeo.2020.119581
    [27]
    秦志军, 陈丽华, 李玉文, 等. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖古沉积背景[J]. 新疆石油地质, 2016, 37(1): 1-6.

    QIN Zhijun, CHEN Lihua, LI Yuwen, et al. Paleo-sedimentary setting of the Lower Permian Fengcheng Alkali Lake in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2016, 37(1): 1-6.
    [28]
    赵研, 郭佩, 鲁子野, 等. 准噶尔盆地下二叠统风城组硅硼钠石发育特征及其富集成因探讨[J]. 沉积学报, 2020, 38(5): 966-979.

    ZHAO Yan, GUO Pei, LU Ziye, et al. Genesis of reedmergnerite in the Lower Permian Fengcheng Formation of the Junggar Basin, NE China[J]. Acta Sedimentologica Sinica, 2020, 38(5): 966-979.
    [29]
    黄玉越, 王贵文, 宋连腾, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩储集层裂缝测井识别与有效性分析[J]. 古地理学报, 2022, 24(3): 540-555.

    HUANG Yuyue, WANG Guiwen, SONG Lianteng, et al. Fracture logging identification and effectiveness analysis of shale reservoir of the Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(3): 540-555.
    [30]
    唐勇, 郑孟林, 王霞田, 等. 准噶尔盆地玛湖凹陷风城组烃源岩沉积古环境[J]. 天然气地球科学, 2022, 33(5): 677-692.

    TANG Yong, ZHENG Menglin, WANG Xiatian, et al. Sedimentary paleoenvironment of source rocks of Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Natural Gas Geoscience, 2022, 33(5): 677-692.
    [31]
    匡立春, 唐勇, 雷德文, 等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发, 2012, 39(6): 657-667.

    KUANG Lichun, TANG Yong, LEI Dewen, et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(6): 657-667.
    [32]
    CAO Jian, XIA Liuwen, WANG Tingting, et al. An alkaline lake in the Late Paleozoic Ice Age (LPIA): a review and new insights into paleoenvironment and petroleum geology[J]. Earth-Science Reviews, 2020, 202: 103091. doi: 10.1016/j.earscirev.2020.103091
    [33]
    夏刘文, 曹剑, 边立曾, 等. 准噶尔盆地玛湖大油区二叠纪碱湖生物—环境协同演化及油源差异性[J]. 中国科学: 地球科学, 2022, 52(4): 732-746.

    XIA Liuwen, CAO Jian, BIAN Lizeng, et al. Co-evolution of paleo-environment and bio-precursors in a Permian alkaline lake, Mahu mega-oil province, Junggar Basin: implications for oil sources[J]. Science China: Earth Sciences, 2022, 65(3): 462-476.
    [34]
    支东明, 曹剑, 向宝力, 等. 玛湖凹陷风城组碱湖烃源岩生烃机理及资源量新认识[J]. 新疆石油地质, 2016, 37(5): 499-506.

    ZHI Dongming, CAO Jian, XIANG Baoli, et al. Fengcheng alkaline lacustrine source rocks of Lower Permian in Mahu Sag in Junggar Basin: hydrocarbon generation mechanism and petroleum resources reestimation[J]. Xinjiang Petroleum Geology, 2016, 37(5): 499-506.
    [35]
    赵建华, 田雨, 刘可禹, 等. 一种基于荧光分析技术的页岩含油量分析方法: CN, 113218929A[P]. 2021-08-06.

    ZHAO Jianhua, TIAN Yu, LIU Keyu, et al. Shale oil content analysis method based on fluorescence analysis technology: CN, 113218929A[P]. 2021-08-06.
    [36]
    张益粼, 王贵文, 宋连腾, 等. 页岩岩相测井表征方法: 以准噶尔盆地玛湖凹陷风城组为例[J]. 地球物理学进展, 2023, 38(1): 393-408.

    ZHANG Yilin, WANG Guiwen, SONG Lianteng, et al. Logging identification method of shale lithofacies: a study of Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Progress in Geophysics, 2023, 38(1): 393-408.
    [37]
    范俊佳, 潘懋, 周海民, 等. 库车坳陷依南2气藏油气运移路径及充注特征[J]. 北京大学学报(自然科学版), 2014, 50(3): 507-514.

    FAN Junjia, PAN Mao, ZHOU Haimin, et al. Hydrocarbon migration pathway and charging characterization of Yinan-2 gas reservoir in Kuqa Depression[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 507-514.
    [38]
    LIU Keyu, GEORGE S C, LU Xuesong, et al. Innovative fluorescence spectroscopic techniques for rapidly characterizing oil inclusions[J]. Organic Geochemistry, 2014, 72: 34-45.
    [39]
    BARWISE T, HAY S J. Predicting oil properties from core fluorescence[M]//SCHUMACHER D, ABRAMS M A. Hydrocarbon migration and its near-surface expression: AAPG memoir 66. Texas: AAPG, 1996: 363-371.
    [40]
    LI Tianjun, HUANG Zhilong, FENG Yue, et al. Reservoir characteristics and evaluation of fluid mobility in organic-rich mixed siliciclastic-carbonate sediments: a case study of the lacustrine Qiketai Formation in Shengbei Sag, Turpan-Hami Basin, Northwest China[J]. Journal of Petroleum Science and Engineering, 2020, 185: 106667.
    [41]
    KHATIBI S, OSTADHASSAN M, XIE Z H, et al. NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales[J]. Fuel, 2019, 235: 167-177.
    [42]
    杨智峰, 唐勇, 郭旭光, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油赋存特征与影响因素[J]. 石油实验地质, 2021, 43(5): 784-796. doi: 10.11781/sysydz202105784

    YANG Zhifeng, TANG Yong, GUO Xuguang, et al. Occurrence states and potential influencing factors of shale oil in the Permian Fengcheng Formation of Mahu Sag, Junggar Basin[J]. Petroleum Geology and Experiment, 2021, 43(5): 784-796. doi: 10.11781/sysydz202105784
    [43]
    闫伟林, 张兆谦, 陈龙川, 等. 基于核磁共振技术的古龙页岩含油饱和度评价新方法[J]. 大庆石油地质与开发, 2021, 40(5): 78-86.

    YAN Weilin, ZHANG Zhaoqian, CHEN Longchuan, et al. New evaluating method of oil saturation in Gulong shale based on NMR technique[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 78-86.
    [44]
    何绪全, 黄东, 赵艾琳, 等. 川中地区大安寨段页岩油气储层测井评价指标体系[J]. 岩性油气藏, 2021, 33(3): 129-137.

    HE Xuquan, HUANG Dong, ZHAO Ailin, et al. Well-logging evaluation index system of shale oil and gas reservoir of Da'anzhai Member in central Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(3): 129-137.
    [45]
    崔宝文, 张顺, 付秀丽, 等. 松辽盆地古龙页岩有机层序地层划分及影响因素[J]. 大庆石油地质与开发, 2021, 40(5): 13-28.

    CUI Baowen, ZHANG Shun, FU Xiuli, et al. Organic sequence stratigraphic division and its influencing factors' analyses for Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 13-28.
    [46]
    郭旭升, 申宝剑, 李志明, 等. 论我国页岩油气的统一性[J]. 石油实验地质, 2024, 46(5): 889-905. doi: 10.11781/sysydz202405889

    GUO Xusheng, SHEN Baojian, LI Zhiming, et al. Discussion on the uniformity of shale oil and gas in China[J]. Petroleum Geology & Experiment, 2024, 46(5): 889-905. doi: 10.11781/sysydz202405889
    [47]
    支东明, 冷筠滢, 谢安, 等. 准噶尔盆地玛湖凹陷风城组泥页岩生物标志化合物特征与赋存状态研究[J]. 石油实验地质, 2024, 46(5): 954-964. doi: 10.11781/sysydz202405954

    ZHI Dongming, LENG Junying, XIE An, et al. Characteristics and occurrence states of shale biomarker compounds in Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2024, 46(5): 954-964. doi: 10.11781/sysydz202405954
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (30) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return