Citation: | HOU Shiwei, LÜ Xunqing, MENG Suyun, ZHANG Hao, DU Xiuli. Microscopic seepage process of gas and water in fractures of tight reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 671-679. doi: 10.11781/sysydz2025030671 |
[1] |
戴金星, 董大忠, 倪云燕, 等. 致密砂岩气藏与页岩气藏展布模式[J]. 石油勘探与开发, 2024, 51(4): 667-678.
DAI Jinxing, DONG Dazhong, NI Yunyan, et al. Distribution patterns of tight sandstone gas and shale gas[J]. Petroleum Exploration and Development, 2024, 51(4): 667-678.
|
[2] |
邹才能, 杨智, 董大忠, 等. 非常规源岩层系油气形成分布与前景展望[J]. 地球科学(中国地质大学学报), 2022, 47(5): 1517-1533.
ZOU Caineng, YANG Zhi, DONG Dazhong, et al. Formation, distribution and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science (Journal of China University of Geosciences), 2022, 47(5): 1517-1533.
|
[3] |
赵永强, 宋振响, 王斌, 等. 准噶尔盆地油气资源潜力与中国石化常规—非常规油气一体化勘探策略[J]. 石油实验地质, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872
ZHAO Yongqiang, SONG Zhenxiang, WANG Bin, et al. Resource potential in Junggar Basin and SINOPEC's integrated exploration strategy for conventional and unconventional petroleum[J]. Petroleum Geology & Experiment, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872
|
[4] |
项鑫, 黄传炎, 曹兰柱, 等. 二连盆地洼槽区非常规油气富集模式及勘探潜力[J]. 地学前缘, 2023, 30(6): 462-472.
XIANG Xin, HUANG Chuanyan, CAO Lanzhu, et al. Enrichment model and exploration potential for unconventional oil and gas in troughs, Erlian Basin[J]. Earth Science Frontiers, 2023, 30(6): 462-472.
|
[5] |
李映涛, 汝智星, 邓尚, 等. 塔里木盆地顺北特深碳酸盐岩储层天然裂缝实验评价及油气意义[J]. 石油实验地质, 2023, 45(3): 422-433. doi: 10.11781/sysydz202303422
LI Yingtao, RU Zhixing, DENG Shang, et al. Experimental evaluation and hydrocarbon significance of natural fractures in Shunbei ultra-deep carbonate reservoir, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 422-433. doi: 10.11781/sysydz202303422
|
[6] |
黄琴, 桑丹, 张俊, 等. 基于数字岩心的海上砂砾岩油藏提高采收率研究[J]. 复杂油气藏, 2024, 17(2): 208-216.
HUANG Qin, SANG Dan, ZHANG Jun, et al. Study on enhanced oil recovery of offshore glutenite reservoir based on digital cores[J]. Complex Hydrocarbon Reservoirs, 2024, 17(2): 208-216.
|
[7] |
王敏. 基于砂砾岩多组分三维数字岩心的电阻率数值模拟与影响规律分析[J]. 油气地质与采收率, 2024, 31(6): 33-44.
WANG Min. Resistivity numerical simulation and its influence law analysis based on multi-component 3D digital core of glutenite[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(6): 33-44.
|
[8] |
李承峰, 刘乐乐, 孙建业, 等. 基于数字岩心的含水合物石英砂微观渗流有限元分析[J]. 海洋地质前沿, 2020, 36(9): 68-72.
LI Chengfeng, LIU Lele, SUN Jianye, et al. Finite element analysis of micro-seepage in hydrate-bearing quartz sands based on digital cores[J]. Marine Geology Frontiers, 2020, 36(9): 68-72.
|
[9] |
庞惠文, 金衍, 高彦芳, 等. 风城油田齐古组油砂细观结构和渗流特征[J]. 新疆石油地质, 2021, 42(4): 487-494.
PANG Huiwen, JIN Yan, GAO Yanfang, et al. Study on meso-structures and flow characteristics of oil sands in Qigu Formation of Fengcheng Oilfield[J]. Xinjiang Petroleum Geology, 2021, 42(4): 487-494.
|
[10] |
邓美洲, 牛娜, 尹霜, 等. 各向异性致密砂岩气藏分段压裂水平井气水两相产能预测模型[J]. 油气地质与采收率, 2024, 31(3): 99-111.
DENG Meizhou, NIU Na, YIN Shuang, et al. Gas-water two-phase productivity prediction model of multistage fractured horizontal wells in anisotropic tight sandstone gas reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(3): 99-111.
|
[11] |
李洋, 王胜, 王硕亮. 考虑混合润湿孔隙的页岩油藏表观渗透率模型[J]. 油气地质与采收率, 2024, 31(2): 108-118.
LI Yang, WANG Sheng, WANG Shuoliang. An apparent oil permeability model for shale oil reservoir with mixed-wet nanopores[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(2): 108-118.
|
[12] |
杜修力, 马超, 路德春. 岩土类材料的静水压力效应[J]. 岩石力学与工程学报, 2015, 34(3): 572-582.
DU Xiuli, MA Chao, LU Dechun. Effect of hydrostatic pressure on geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 572-582.
|
[13] |
FU Shuaishi, ZHANG Lianjin, LI Yingwen, et al. Influence of stress sensitivity on water-gas flow in carbonate rocks[J]. Geofluids, 2020, 2020(1): 6642008.
|
[14] |
隋微波, 权子涵, 侯亚南, 等. 利用数字岩心抽象孔隙模型计算孔隙体积压缩系数[J]. 石油勘探与开发, 2020, 47(3): 564-572.
SUI Weibo, QUAN Zihan, HOU Yanan, et al. Estimating pore volume compressibility by spheroidal pore modeling of digital rocks[J]. Petroleum Exploration and Development, 2020, 47(3): 564-572.
|
[15] |
邓航, 田巍. 储层条件下的应力敏感性研究[J]. 断块油气田, 2023, 30(6): 933-939.
DENG Hang, TIAN Wei. Study on stress sensitivity under reservoir conditions[J]. Fault-Block Oil & Gas Field, 2023, 30(6): 933-939.
|
[16] |
张杜杰. 超深致密砂岩气藏应力敏感性实验研究[J]. 复杂油气藏, 2024, 17(2): 217-224.
ZHANG Dujie. Experimental study on stress sensitivity of ultra-deep tight sandstone gas reservoirs[J]. Complex Hydrocarbon Reservoirs, 2024, 17(2): 217-224.
|
[17] |
王长权, 田中敬, 王晨晨, 等. 基于应力敏感的致密油藏孔隙结构及油水两相渗流特征[J]. 特种油气藏, 2023, 30(4): 131-138.
WANG Changquan, TIAN Zhongjing, WANG Chenchen, et al. Pore Structure and oil-water two-phase seepage characteristics of tight oil reservoirs based on stress sensitivity[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 131-138.
|
[18] |
刘向君, 熊健, 梁利喜, 等. 基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响[J]. 地球物理学进展, 2017, 32(3): 1019-1028.
LIU Xiangjun, XIONG Jian, LIANG Lixi, et al. Study on the characteristics of pore structure of tight sand based on micro-CT scanning and its influence on fluid flow[J]. Progress in Geophysics, 2017, 32(3): 1019-1028.
|
[19] |
杨永飞, 王金雷, 王建忠, 等. 基于VOF方法的超临界二氧化碳—水两相流动孔隙尺度数值模拟[J]. 天然气工业, 2023, 43(3): 69-77.
YANG Yongfei, WANG Jinlei, WANG Jianzhong, et al. Pore-scale numerical simulation of supercritical CO2-brine two-phase flow based on VOF method[J]. Natural Gas Industry, 2023, 43(3): 69-77.
|
[20] |
郭晶晶, 王帝贺, 王攀荣, 等. 基于数字岩心的低渗储层孔隙结构及水驱剩余油分布特征[J]. 特种油气藏, 2023, 30(2): 101-108.
GUO Jingjing, WANG Dihe, WANG Panrong, et al. Pore structure of low-permeability reservoir and distribution characteristics of remaining oil after water flooding based on digital core[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 101-108.
|
[21] |
谭锋奇, 马春苗, 黎宪坤, 等. 储层流体可动性在油田开发中的应用及展望[J]. 西南石油大学学报(自然科学版), 2024, 46(1): 1-20.
TAN Fengqi, MA Chunmiao, LI Xiankun, et al. Application and prospect of fluid mobility in oilfield development[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(1): 1-20.
|
[22] |
张庆宇, 鞠斌山. 水驱油藏优势渗流通道识别及其效果分析[J]. 现代地质, 2024, 38(6): 1523-1531.
ZHANG Qingyu, JU Binshan. Identification of dominant seepage channels in water-flooded reservoirs and analysis of their effects[J]. Geoscience, 2024, 38(6): 1523-1531.
|
[23] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-assisted Intervention-MICCAI 2015. Munich, Germany: Springer International Publishing, 2015: 234-241.
|
[24] |
赵久玉, 蔡建超. 基于Unet++网络的数字岩心图像分割泛化能力[J]. 中国石油大学学报(自然科学版), 2024, 48(2): 118-125.
ZHAO Jiuyu, CAI Jianchao. Generalization ability analysis of digital rock image segmentation based on Unet++ network[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(2): 118-125.
|
[25] |
汪南洋, 沈疆海. 基于MSHAM-UNet的岩心孔洞图像分割方法[J]. 科学技术与工程, 2024, 24(24): 10362-10369.
WANG Nanyang, SHEN Jianghai. Image segmentation method of rock core hole based on MSHAM-UNet[J]. Science Technology and Engineering, 2024, 24(24): 10362-10369.
|
[26] |
王鸣川, 王燃, 岳慧, 等. 页岩油微观渗流机理研究进展[J]. 石油实验地质, 2024, 46(1): 98-110. doi: 10.11781/sysydz202401098
WANG Mingchuan, WANG Ran, YUE Hui, et al. Research progress of microscopic percolation mechanism of shale oil[J]. Petroleum Geology & Experiment, 2024, 46(1): 98-110. doi: 10.11781/sysydz202401098
|
[27] |
ZHANG Lei, KANG Qinjun, YAO Jun, et al. Pore scale simulation of liquid and gas two-phase flow based on digital core technology[J]. Science China Technological Sciences, 2015, 58(8): 1375-1384.
|
[28] |
SONG Rui, WANG Yao, LIU Jianjun, et al. Comparative analysis on pore-scale permeability prediction on micro-CT images of rock using numerical and empirical approaches[J]. Energy Science & Engineering, 2019, 7(6): 2842-2854.
|
[29] |
赵玉龙, 周厚杰, 李洪玺, 等. 基于水平集方法的低渗砂岩数字岩心气水两相渗流模拟[J]. 计算物理, 2021, 38(5): 585-594.
ZHAO Yulong, ZHOU Houjie, LI Hongxi, et al. Gas-water two-phase flow simulation of low-permeability sandstone digital rock: level-set method[J]. Chinese Journal of Computational Physics, 2021, 38(5): 585-594.
|
[30] |
OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
|
[31] |
TOKAN-LAWAL A, PRODANOVIC M, EICHHUBL P. Investigating flow properties of partially cemented fractures in Travis Peak Formation using image-based pore-scale modeling[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(8): 5453-5466.
|
[32] |
蔡沛辰, 阙云. 基于水平集方法的原状土三维水气两相渗流特性数值研究[J]. 长江科学院院报, 2022, 39(9): 90-95.
CAI Peichen, QUE Yun. Numerical study on 3D water-air two-phase seepage characteristics of undisturbed soil based on level set method[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(9): 90-95.
|
[33] |
方辉煌, 桑树勋, 刘世奇, 等. 基于微米焦点CT技术的煤岩数字岩石物理分析方法: 以沁水盆地伯方3号煤为例[J]. 煤田地质与勘探, 2018, 46(5): 167-174.
FANG Huihuang, SANG Shuxun, LIU Shiqi, et al. Study of digital petrophysical analysis method based on micro-focus X-ray tomography: a case study from No. 3 coal seam of Bofang mining area in southern Qinshui Basin[J]. Coal Geology & Exploration, 2018, 46(5): 167-174.
|