Volume 47 Issue 3
May  2025
Turn off MathJax
Article Contents
HOU Shiwei, LÜ Xunqing, MENG Suyun, ZHANG Hao, DU Xiuli. Microscopic seepage process of gas and water in fractures of tight reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 671-679. doi: 10.11781/sysydz2025030671
Citation: HOU Shiwei, LÜ Xunqing, MENG Suyun, ZHANG Hao, DU Xiuli. Microscopic seepage process of gas and water in fractures of tight reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 671-679. doi: 10.11781/sysydz2025030671

Microscopic seepage process of gas and water in fractures of tight reservoirs

doi: 10.11781/sysydz2025030671
  • Received Date: 2024-09-24
  • Rev Recd Date: 2025-04-10
  • Publish Date: 2025-05-28
  • To investigate the dynamic seepage mechanisms of fluids within fractures of tight reservoirs, a three-dimensional digital core fracture structure of an actual reservoir was constructed based on deep learning segmentation results. First, the fracture connectivity was evaluated. Then, single-phase flow permeability simulation was conducted, and gas-water two-phase flow displacement was studied using a level-set method coupled with Navier-Stokes (N-S) equations, with solutions obtained using the finite element method. The results showed that the deep learning method efficiently and automatically segmented fractures in core images with an accuracy of 85%. Connected fractures played an important role in rock permeability. Different fluid properties affected flow pressure and velocity, thereby affecting permeability. During the displacement simulation, the distribution characteristics of gas and water phases were clearly observed. As the displacement progressed until seepage completion, the fluid saturation in narrow fracture channels remained nearly unchanged, serving as the primary storage space for residual gas phase. Fractures with relatively good connectivity, characterized by great width and straightness, became the main seepage channels where gas recovery rates tended to stabilize. The research findings provide guidance for studying gas-water two-phase flow in fracture spaces of tight reservoirs under microscopic conditions.

     

  • All authors declare no relevant conflict of interests.
    HOU Shiwei contributed to the numerical experiment design, paper writing, and revision. LV Xunqing completed the experimental operation and contributed to the paper writing and revision. MENG Suyun provided data and revision suggestions. ZHANG Hao contributed to the experimental design and paper revision. DU Xiuli contributed to the paper structure design and provided revision suggestions. All authors have read the final version of the paper and consented to its submission.
  • loading
  • [1]
    戴金星, 董大忠, 倪云燕, 等. 致密砂岩气藏与页岩气藏展布模式[J]. 石油勘探与开发, 2024, 51(4): 667-678.

    DAI Jinxing, DONG Dazhong, NI Yunyan, et al. Distribution patterns of tight sandstone gas and shale gas[J]. Petroleum Exploration and Development, 2024, 51(4): 667-678.
    [2]
    邹才能, 杨智, 董大忠, 等. 非常规源岩层系油气形成分布与前景展望[J]. 地球科学(中国地质大学学报), 2022, 47(5): 1517-1533.

    ZOU Caineng, YANG Zhi, DONG Dazhong, et al. Formation, distribution and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science (Journal of China University of Geosciences), 2022, 47(5): 1517-1533.
    [3]
    赵永强, 宋振响, 王斌, 等. 准噶尔盆地油气资源潜力与中国石化常规—非常规油气一体化勘探策略[J]. 石油实验地质, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872

    ZHAO Yongqiang, SONG Zhenxiang, WANG Bin, et al. Resource potential in Junggar Basin and SINOPEC's integrated exploration strategy for conventional and unconventional petroleum[J]. Petroleum Geology & Experiment, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872
    [4]
    项鑫, 黄传炎, 曹兰柱, 等. 二连盆地洼槽区非常规油气富集模式及勘探潜力[J]. 地学前缘, 2023, 30(6): 462-472.

    XIANG Xin, HUANG Chuanyan, CAO Lanzhu, et al. Enrichment model and exploration potential for unconventional oil and gas in troughs, Erlian Basin[J]. Earth Science Frontiers, 2023, 30(6): 462-472.
    [5]
    李映涛, 汝智星, 邓尚, 等. 塔里木盆地顺北特深碳酸盐岩储层天然裂缝实验评价及油气意义[J]. 石油实验地质, 2023, 45(3): 422-433. doi: 10.11781/sysydz202303422

    LI Yingtao, RU Zhixing, DENG Shang, et al. Experimental evaluation and hydrocarbon significance of natural fractures in Shunbei ultra-deep carbonate reservoir, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 422-433. doi: 10.11781/sysydz202303422
    [6]
    黄琴, 桑丹, 张俊, 等. 基于数字岩心的海上砂砾岩油藏提高采收率研究[J]. 复杂油气藏, 2024, 17(2): 208-216.

    HUANG Qin, SANG Dan, ZHANG Jun, et al. Study on enhanced oil recovery of offshore glutenite reservoir based on digital cores[J]. Complex Hydrocarbon Reservoirs, 2024, 17(2): 208-216.
    [7]
    王敏. 基于砂砾岩多组分三维数字岩心的电阻率数值模拟与影响规律分析[J]. 油气地质与采收率, 2024, 31(6): 33-44.

    WANG Min. Resistivity numerical simulation and its influence law analysis based on multi-component 3D digital core of glutenite[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(6): 33-44.
    [8]
    李承峰, 刘乐乐, 孙建业, 等. 基于数字岩心的含水合物石英砂微观渗流有限元分析[J]. 海洋地质前沿, 2020, 36(9): 68-72.

    LI Chengfeng, LIU Lele, SUN Jianye, et al. Finite element analysis of micro-seepage in hydrate-bearing quartz sands based on digital cores[J]. Marine Geology Frontiers, 2020, 36(9): 68-72.
    [9]
    庞惠文, 金衍, 高彦芳, 等. 风城油田齐古组油砂细观结构和渗流特征[J]. 新疆石油地质, 2021, 42(4): 487-494.

    PANG Huiwen, JIN Yan, GAO Yanfang, et al. Study on meso-structures and flow characteristics of oil sands in Qigu Formation of Fengcheng Oilfield[J]. Xinjiang Petroleum Geology, 2021, 42(4): 487-494.
    [10]
    邓美洲, 牛娜, 尹霜, 等. 各向异性致密砂岩气藏分段压裂水平井气水两相产能预测模型[J]. 油气地质与采收率, 2024, 31(3): 99-111.

    DENG Meizhou, NIU Na, YIN Shuang, et al. Gas-water two-phase productivity prediction model of multistage fractured horizontal wells in anisotropic tight sandstone gas reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(3): 99-111.
    [11]
    李洋, 王胜, 王硕亮. 考虑混合润湿孔隙的页岩油藏表观渗透率模型[J]. 油气地质与采收率, 2024, 31(2): 108-118.

    LI Yang, WANG Sheng, WANG Shuoliang. An apparent oil permeability model for shale oil reservoir with mixed-wet nanopores[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(2): 108-118.
    [12]
    杜修力, 马超, 路德春. 岩土类材料的静水压力效应[J]. 岩石力学与工程学报, 2015, 34(3): 572-582.

    DU Xiuli, MA Chao, LU Dechun. Effect of hydrostatic pressure on geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 572-582.
    [13]
    FU Shuaishi, ZHANG Lianjin, LI Yingwen, et al. Influence of stress sensitivity on water-gas flow in carbonate rocks[J]. Geofluids, 2020, 2020(1): 6642008.
    [14]
    隋微波, 权子涵, 侯亚南, 等. 利用数字岩心抽象孔隙模型计算孔隙体积压缩系数[J]. 石油勘探与开发, 2020, 47(3): 564-572.

    SUI Weibo, QUAN Zihan, HOU Yanan, et al. Estimating pore volume compressibility by spheroidal pore modeling of digital rocks[J]. Petroleum Exploration and Development, 2020, 47(3): 564-572.
    [15]
    邓航, 田巍. 储层条件下的应力敏感性研究[J]. 断块油气田, 2023, 30(6): 933-939.

    DENG Hang, TIAN Wei. Study on stress sensitivity under reservoir conditions[J]. Fault-Block Oil & Gas Field, 2023, 30(6): 933-939.
    [16]
    张杜杰. 超深致密砂岩气藏应力敏感性实验研究[J]. 复杂油气藏, 2024, 17(2): 217-224.

    ZHANG Dujie. Experimental study on stress sensitivity of ultra-deep tight sandstone gas reservoirs[J]. Complex Hydrocarbon Reservoirs, 2024, 17(2): 217-224.
    [17]
    王长权, 田中敬, 王晨晨, 等. 基于应力敏感的致密油藏孔隙结构及油水两相渗流特征[J]. 特种油气藏, 2023, 30(4): 131-138.

    WANG Changquan, TIAN Zhongjing, WANG Chenchen, et al. Pore Structure and oil-water two-phase seepage characteristics of tight oil reservoirs based on stress sensitivity[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 131-138.
    [18]
    刘向君, 熊健, 梁利喜, 等. 基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响[J]. 地球物理学进展, 2017, 32(3): 1019-1028.

    LIU Xiangjun, XIONG Jian, LIANG Lixi, et al. Study on the characteristics of pore structure of tight sand based on micro-CT scanning and its influence on fluid flow[J]. Progress in Geophysics, 2017, 32(3): 1019-1028.
    [19]
    杨永飞, 王金雷, 王建忠, 等. 基于VOF方法的超临界二氧化碳—水两相流动孔隙尺度数值模拟[J]. 天然气工业, 2023, 43(3): 69-77.

    YANG Yongfei, WANG Jinlei, WANG Jianzhong, et al. Pore-scale numerical simulation of supercritical CO2-brine two-phase flow based on VOF method[J]. Natural Gas Industry, 2023, 43(3): 69-77.
    [20]
    郭晶晶, 王帝贺, 王攀荣, 等. 基于数字岩心的低渗储层孔隙结构及水驱剩余油分布特征[J]. 特种油气藏, 2023, 30(2): 101-108.

    GUO Jingjing, WANG Dihe, WANG Panrong, et al. Pore structure of low-permeability reservoir and distribution characteristics of remaining oil after water flooding based on digital core[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 101-108.
    [21]
    谭锋奇, 马春苗, 黎宪坤, 等. 储层流体可动性在油田开发中的应用及展望[J]. 西南石油大学学报(自然科学版), 2024, 46(1): 1-20.

    TAN Fengqi, MA Chunmiao, LI Xiankun, et al. Application and prospect of fluid mobility in oilfield development[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(1): 1-20.
    [22]
    张庆宇, 鞠斌山. 水驱油藏优势渗流通道识别及其效果分析[J]. 现代地质, 2024, 38(6): 1523-1531.

    ZHANG Qingyu, JU Binshan. Identification of dominant seepage channels in water-flooded reservoirs and analysis of their effects[J]. Geoscience, 2024, 38(6): 1523-1531.
    [23]
    RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-assisted Intervention-MICCAI 2015. Munich, Germany: Springer International Publishing, 2015: 234-241.
    [24]
    赵久玉, 蔡建超. 基于Unet++网络的数字岩心图像分割泛化能力[J]. 中国石油大学学报(自然科学版), 2024, 48(2): 118-125.

    ZHAO Jiuyu, CAI Jianchao. Generalization ability analysis of digital rock image segmentation based on Unet++ network[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(2): 118-125.
    [25]
    汪南洋, 沈疆海. 基于MSHAM-UNet的岩心孔洞图像分割方法[J]. 科学技术与工程, 2024, 24(24): 10362-10369.

    WANG Nanyang, SHEN Jianghai. Image segmentation method of rock core hole based on MSHAM-UNet[J]. Science Technology and Engineering, 2024, 24(24): 10362-10369.
    [26]
    王鸣川, 王燃, 岳慧, 等. 页岩油微观渗流机理研究进展[J]. 石油实验地质, 2024, 46(1): 98-110. doi: 10.11781/sysydz202401098

    WANG Mingchuan, WANG Ran, YUE Hui, et al. Research progress of microscopic percolation mechanism of shale oil[J]. Petroleum Geology & Experiment, 2024, 46(1): 98-110. doi: 10.11781/sysydz202401098
    [27]
    ZHANG Lei, KANG Qinjun, YAO Jun, et al. Pore scale simulation of liquid and gas two-phase flow based on digital core technology[J]. Science China Technological Sciences, 2015, 58(8): 1375-1384.
    [28]
    SONG Rui, WANG Yao, LIU Jianjun, et al. Comparative analysis on pore-scale permeability prediction on micro-CT images of rock using numerical and empirical approaches[J]. Energy Science & Engineering, 2019, 7(6): 2842-2854.
    [29]
    赵玉龙, 周厚杰, 李洪玺, 等. 基于水平集方法的低渗砂岩数字岩心气水两相渗流模拟[J]. 计算物理, 2021, 38(5): 585-594.

    ZHAO Yulong, ZHOU Houjie, LI Hongxi, et al. Gas-water two-phase flow simulation of low-permeability sandstone digital rock: level-set method[J]. Chinese Journal of Computational Physics, 2021, 38(5): 585-594.
    [30]
    OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
    [31]
    TOKAN-LAWAL A, PRODANOVIC M, EICHHUBL P. Investigating flow properties of partially cemented fractures in Travis Peak Formation using image-based pore-scale modeling[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(8): 5453-5466.
    [32]
    蔡沛辰, 阙云. 基于水平集方法的原状土三维水气两相渗流特性数值研究[J]. 长江科学院院报, 2022, 39(9): 90-95.

    CAI Peichen, QUE Yun. Numerical study on 3D water-air two-phase seepage characteristics of undisturbed soil based on level set method[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(9): 90-95.
    [33]
    方辉煌, 桑树勋, 刘世奇, 等. 基于微米焦点CT技术的煤岩数字岩石物理分析方法: 以沁水盆地伯方3号煤为例[J]. 煤田地质与勘探, 2018, 46(5): 167-174.

    FANG Huihuang, SANG Shuxun, LIU Shiqi, et al. Study of digital petrophysical analysis method based on micro-focus X-ray tomography: a case study from No. 3 coal seam of Bofang mining area in southern Qinshui Basin[J]. Coal Geology & Exploration, 2018, 46(5): 167-174.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (25) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return