Citation: | JIANG Ming, ZOU Qingteng, XIAO Zhuang, WANG Yong, GE Jingnan, CHEN Zhao. Influencing factors and prevention optimization of shallow shale gas inter-well frac-hits[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 693-704. doi: 10.11781/sysydz2025030693 |
[1] |
徐政语, 梁兴, 鲁慧丽, 等. 昭通示范区五峰组—龙马溪组页岩气成藏类型与有利区分布[J]. 海相油气地质, 2021, 26(4): 289-298. doi: 10.3969/j.issn.1672-9854.2021.04.001
XU Zhengyu, LIANG Xing, LU Huili, et al. Shale gas accumulation types and favorable area distribution of Wufeng Formation-Longmaxi Formation in Zhaotong demonstration area[J]. Marine Origin Petroleum Geology, 2021, 26(4): 289-298. doi: 10.3969/j.issn.1672-9854.2021.04.001
|
[2] |
云露, 高玉巧, 高全芳. 渝东南地区常压页岩气勘探开发进展及下步攻关方向[J]. 石油实验地质, 2023, 45(6): 1078-1088. doi: 10.11781/sysydz2023061078
YUN Lu, GAO Yuqiao, GAO Quanfang. Progress and research direction of normal-pressure shale gas exploration and development in southeastern Chongqing[J]. Petroleum Geology & Experiment, 2023, 45(6): 1078-1088. doi: 10.11781/sysydz2023061078
|
[3] |
常德双, 韩冰, 朱斗星, 等. 燕山运动对页岩气保存条件的控制作用: 以滇黔北地区太阳—海坝区块龙马溪组页岩气为例[J]. 天然气工业, 2021, 41(S1): 45-50.
CHANG Deshuang, HAN Bing, ZHU Douxing, et al. Control of Yanshanian movement on shale gas preservation conditions: a case study on the Longmaxi Formation shale gas in Taiyang-Haiba block of northern Yunnan and Guizhou[J]. Natural Gas Industry, 2021, 41(S1): 45-50.
|
[4] |
梁兴, 管彬, 李军龙, 等. 山地浅层页岩气地质工程一体化高效压裂试气技术: 以昭通国家级页岩气示范区太阳气田为例[J]. 天然气工业, 2021, 41(S1): 124-132.
LIANG Xing, GUAN Bin, LI Junlong, et al. Key technologies of shallow shale gas reservoir in mountainous area: taking Taiyang gas field in Zhaotong national shale gas demonstration area as an example[J]. Natural Gas Industry, 2021, 41(S1): 124-132.
|
[5] |
刘明, 杨瑞青, 杨风丽, 等. 渝东南南川地区五峰组—龙马溪组页岩气层地应力数值模拟及有利区预测[J]. 石油实验地质, 2023, 45(6): 1178-1188. doi: 10.11781/sysydz2023061178
LIU Ming, YANG Ruiqing, YANG Fengli, et al. Numerical modeling of in-situ stress and prediction of favorable area of shale gas layer in Wufeng to Longmaxi formations, Nanchuan region, southeastern Chongqing[J]. Petroleum Geology & Experiment, 2023, 45(6): 1178-1188. doi: 10.11781/sysydz2023061178
|
[6] |
HE Y, WANG J, HUANG X, et al. Investigation of low water recovery based on gas-water two-phase low-velocity non-Darcy flow model for hydraulically fractured horizontal wells in shale[J]. Petroleum, 2023, 9(3): 364-372. doi: 10.1016/j.petlm.2022.03.005
|
[7] |
SHEN J, HE H, LI Y, et al. An investigation of data analysis method for hydraulic fracturing based on the water hammer effect[J]. Unconventional Resources, 2023, 3: 284-290. doi: 10.1016/j.uncres.2023.05.003
|
[8] |
魏海峰. 非均质性页岩水力压裂裂缝扩展形态研究进展[J]. 油气地质与采收率, 2023, 30(4): 156-166.
WEI Haifeng. Research progress on fracture propagation patterns of hydraulic fracturing in heterogeneous shale[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(4): 156-166.
|
[9] |
孟胡, 申颖浩, 朱万雨, 等. 四川盆地昭通页岩气水平井水力压裂套管外载分析[J]. 特种油气藏, 2023, 30(5): 166-174. doi: 10.3969/j.issn.1006-6535.2023.05.022
MENG Hu, SHEN Yinghao, ZHA Wanyu, et al. Extemal load analysis of hydraulic fracturing casing in Zhaotong shale gas horizontal well of Sichuan Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 166-174. doi: 10.3969/j.issn.1006-6535.2023.05.022
|
[10] |
KANG Y, LI P, CAO W, et al. Investigation of pore structure alteration and permeability enhancement of shale matrix by supercritical water treatment after hydraulic fracturing[J]. Petroleum, 2024, 10(2): 265-274. doi: 10.1016/j.petlm.2022.05.002
|
[11] |
TANG Hewei, YAN Bicheng, CHAI Zhi, et al. Analyzing the well-interference phenomenon in the Eagle Ford shale/austin chalk production system with a comprehensive compositional reservoir model[J]. SPE Reservoir Evaluation & Engineering, 2019, 22(3): 827-841.
|
[12] |
PANG Wei, EHLIG-ECONOMIDES C A, DU Juan, et al. Effect of well interference on shale gas well SRV interpretation[C]//SPE Asia Pacific Unconventional Resources Conference and Exhibition. Brisbane, Australia: SPE, 2015.
|
[13] |
张庆, 何封, 何佑伟. 基于机器学习的页岩气井井间干扰评价及预测[J]. 油气藏评价与开发, 2022, 12(3): 487-495.
ZHANG Qing, HE Feng, HE Youwei. Well interference evaluation and prediction of shale gas wells based on machine learning[J]. Reservoir Evaluation and Development, 2022, 12(3): 487-495.
|
[14] |
周小金, 杨洪志, 范宇, 等. 川南页岩气水平井井间干扰影响因素分析[J]. 中国石油勘探, 2021, 26(2): 103-112. doi: 10.3969/j.issn.1672-7703.2021.02.011
ZHOU Xiaojin, YANG Hongzhi, FAN Yu, et al. Analysis of factors affecting frac hits in horizontal shale gas wells in the southern Sichuan Basin[J]. China Petroleum Exploration, 2021, 26(2): 103-112. doi: 10.3969/j.issn.1672-7703.2021.02.011
|
[15] |
KUMAR A, SETH P, SHRIVASTAVA K, et al. Well interference diagnosis through integrated analysis of tracer and pressure interference tests[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Houston, Texas, USA: SPE, 2018.
|
[16] |
樊怀才, 张鉴, 岳圣杰, 等. 页岩气平台式井组井间干扰影响因素分析及井距优化[J]. 天然气地球科学, 2022, 33(4): 512-519.
FAN Huaicai, ZHANG Jian, YUE Shengjie, et al. Analysis of influencing factors of interwell interference in shale gas well groups and well spacing optimization[J]. Natural Gas Geoscience, 2022, 33(4): 512-519.
|
[17] |
卢比, 胡春锋, 马军. 南川页岩气田压裂水平井井间干扰影响因素及对策研究[J]. 油气藏评价与开发, 2023, 13(3): 330-339.
LU Bi, HU Chunfeng, MA Jun. Influencing factors and countermeasures of inter-well interference of fracturing horizontal wells in Nanchuan shale gas field[J]. Reservoir Evaluation and Development, 2023, 13(3): 330-339.
|
[18] |
王文东, 喻文锋, 高攀, 等. 页岩气井间压裂窜扰机理及影响规律[J]. 天然气工业, 2024, 44(1): 128-138. doi: 10.3787/j.issn.1000-0976.2024.01.012
WANG Wendong, YU Wenfeng, GAO Pan, et al. Mechanisms and impact patterns of frac hits between shale gas wells[J]. Natural Gas Industry, 2024, 44(1): 128-138. doi: 10.3787/j.issn.1000-0976.2024.01.012
|
[19] |
朱海燕, 唐煊赫, 肖佳林, 等. 四川盆地页岩气立体井网压裂井间干扰与控制研究进展[C]//第33届全国天然气学术年会(2023)论文集. 南宁: 中国石油学会天然气专业委员会, 2023.
ZHU Haiyan, TANG Xuanhe, XIAO Jialin, et al. Research progress of interwell interference and control in vertical well pattern fracturing of shale gas in Sichuan Basin[C]. Proceedings of the 33rd National Natural Gas Academic Annual Conference (2023). Nanning: Natural Gas Professional Committee of the Chinese Petroleum Society, 2023.
|
[20] |
王林生, 梁利喜, 覃建华, 等. 玛湖砾岩油藏水平井压裂井间窜扰特征与机制分析[J]. 油气地质与采收率, 2023, 30(6): 129-137.
WANG Linsheng, LIANG Lixi, QIN Jianhua, et al. Characteristics and mechanism of inter-well interference in horizontal well fracturing in Mahu conglomerate reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6): 129-137.
|
[21] |
HE Youwei, GUO Jianchun, TANG Yong, et al. Interwell fracturing interference evaluation of multi-well pads in shale gas reservoirs: a case study in WY Basin[C]//SPE Annual Technical Conference and Exhibition. Virtual: SPE, 2020.
|
[22] |
李跃纲, 宋毅, 黎俊峰, 等. 北美页岩气水平井压裂井间干扰研究现状与启示[J]. 天然气工业, 2023, 43(5): 34-46. doi: 10.3787/j.issn.1000-0976.2023.05.004
LI Yuegang, SONG Yi, LI Junfeng, et al. Research status and implications of well interference in shale gas horizontal well fracturing in North America[J]. Natural Gas Industry, 2023, 43(5): 34-46. doi: 10.3787/j.issn.1000-0976.2023.05.004
|
[23] |
郭旭洋, 金衍, 黄雷, 等. 页岩油气藏水平井井间干扰研究现状和讨论[J]. 石油钻采工艺, 2021, 43(3): 348-367.
GUO Xuyang, JIN Yan, HUANG Lei, et al. Research status and discussion of horizontal well interference in shale oil and gas reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(3): 348-367.
|
[24] |
WU Kan, OLSON J, BALHOFF M T, et al. Numerical analysis for promoting uniform development of simultaneous multiple-fracture propagation in horizontal wells[J]. SPE Production & Operations, 2017, 32(1): 41-50.
|
[25] |
RAINBOLT M F, ESCO J. Frac hit induced production losses: evaluating root causes, damage location, possible prevention methods and success of remediation treatments, Part Ⅱ[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition. The Woodlands, Texas, USA: SPE, 2018.
|
[26] |
GUPTA I, RAI C, DEVEGOWDA D, et al. Fracture hits in unconventional reservoirs: a critical review[J]. SPE Journal, 2021, 26(1): 412-434.
|
[27] |
何佑伟, 贺质越, 汤勇, 等. 基于机器学习的页岩气井产量评价与预测[J]. 石油钻采工艺, 2021, 43(4): 518-524.
HE Youwei, HE Zhiyue, TANG Yong, et al. Shale gas well production evaluation and prediction based on machine learning[J]. Oil Drilling & Production Technology, 2021, 43(4): 518-524.
|
[28] |
李文倚, 侯明雨, 全航, 等. 一种基于知识图谱和随机森林算法的致密气井产能预测方法[J]. 特种油气藏, 2024, 31(5): 77-84.
LI Wenyi, HOU Mingyu, QUAN Hang, et al. A productivity prediction method for tight gas wells based on knowledge graph and random forest algorithm[J]. Special Oil & Gas Reservoirs, 2024, 31(5): 77-84.
|
[29] |
何浩男, 刘誉, 宋君, 等. 老井重复压裂后产能预测新模型及其应用[J]. 钻采工艺, 2023, 46(1): 174-178
HE Haonan, LIU Yu, SONG Jun, et al. A new productivity prediction model for old wells after refracturing and its application[J]. Drilling and Production Technology, 2023, 46(1): 174-178.
|
[30] |
YADAV H, MOTEALLEH S. Improving quantitative analysis of frac-hits and refracs in unconventional plays using RTA[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition. The Woodlands, Texas, USA: SPE, 2017.
|
[31] |
BARTON N, BANDIS S, BAKHTAR K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(3): 121-140.
|
[32] |
舒红林, 刘臣, 李志强, 等. 昭通浅层页岩气压裂复杂裂缝扩展数值模拟研究[J]. 石油钻探技术, 2023, 51(6): 77-84.
SHU Honglin, LIU Chen, LI Zhiqiang, et al. Numerical simulation of complex fracture propagation in shallow shale gas fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77-84.
|
[33] |
何佑伟, 谢义翔, 乔宇, 等. 非常规油气藏不规则复杂裂缝表征方法[J]. 石油实验地质, 2024, 46(4): 748-759. doi: 10.11781/sysydz202404748
HE Youwei, XIE Yixiang, QIAO Yu, et al. Characterization of irregular complex fractures in unconventional oil and gas reservoirs[J]. Petroleum Geology & Experiment, 2024, 46(4): 748-759. doi: 10.11781/sysydz202404748
|