Citation: | FENG Shaoke, XIONG Liang, YIN Shuai, DONG Xiaoxia, WEI Limin. Quantitative evaluation of brittleness of deep shale gas reservoirs of Wufeng- Longmaxi formations in Lintanchang area, southeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 742-753. doi: 10.11781/sysydz2025040742 |
[1] |
WANG Ziyi, CHEN Lei, CHEN Dongxia, et al. Characterization and evaluation of shale lithofacies within the lowermost Longmaxi-Wufeng formation in the southeast Sichuan Basin[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107353.
|
[2] |
郝绵柱, 姜振学, 聂舟, 等. 深层页岩储层孔隙连通性发育特征及其控制因素: 以川南地区龙马溪组为例[J]. 断块油气田, 2022, 29(6): 761-768.
HAO Mianzhu, JIANG Zhenxue, NIE Zhou, et al. Development characteristics of pore connectivity in deep shale reservoirs and its controlling factors: a case study of Longmaxi Formation in southern Sichuan Basin[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 761-768.
|
[3] |
赵圣贤, 夏自强, 刘文平, 等. 四川盆地南部泸203井区五峰组—龙马溪组页岩裂缝特征及形成演化[J]. 油气地质与采收率, 2022, 29(5): 28-38.
ZHAO Shengxian, XIA Ziqiang, LIU Wenping, et al. Fracture characteristics and evolution of Wufeng-Longmaxi Formation shale in Lu203 well area in southern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(5): 28-38.
|
[4] |
唐建明, 何建华, 魏力民, 等. 川东南林滩场地区五峰组—龙马溪组页岩气藏压力演化及其地质意义[J]. 石油实验地质, 2023, 45(4): 739-750. doi: 10.11781/sysydz202304739
TANG Jianming, HE Jianhua, WEI Limin, et al. Pressure evolution of shale gas reservoirs in Wufeng-Longmaxi formations, Lintanchang area, southeast Sichuan Basin and its geological significance[J]. Petroleum Geology & Experiment, 2023, 45(4): 739-750. doi: 10.11781/sysydz202304739
|
[5] |
葛勋, 郭彤楼, 马永生, 等. 四川盆地东南缘林滩场地区上奥陶统五峰组—龙马溪组页岩气储层甜点预测[J]. 石油与天然气地质, 2022, 43(3): 633-647.
GE Xun, GUO Tonglou, MA Yongsheng, et al. Prediction of shale reservoir sweet spots of the Upper Ordovician Wufeng-Longmaxi formations in Lintanchang area, southeastern margin of Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(3): 633-647.
|
[6] |
张晨晨, 刘滋, 董大忠, 等. 深层海相页岩脆性特征分析与表征[J]. 新疆石油地质, 2019, 40(5): 555-563.
ZHANG Chenchen, LIU Zi, DONG Dazhong, et al. Brittleness analysis and characterization of deep marine shales[J]. Xinjiang Petroleum Geology, 2019, 40(4): 555-563.
|
[7] |
侯振坤, 杨春和, 魏翔, 等. 龙马溪组页岩脆性特征试验研究[J]. 煤炭学报, 2016, 41(5): 1188-1196.
HOU Zhenkun, YANG Chunhe, WEI Xiang, et al. Experimental study on the brittle characteristics of Longmaxi Formation shale[J]. Journal of China Coal Society, 2016, 41(5): 1188-1196.
|
[8] |
李庆辉, 陈勉, 金衍, 等. 页岩气储层岩石力学特性及脆性评价[J]. 石油钻探技术, 2012, 40(4): 17-22.
LI Qinghui, CHEN Mian, JIN Yan, et al. Rock mechanical properties and brittleness evaluation of shale gas reservoir[J]. Petroleum Drilling Techniques, 2012, 40(4): 17-22.
|
[9] |
JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
|
[10] |
ZHANG Decheng, RANJITH P G, PERERA M S A. The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: a review[J]. Journal of Petroleum Science and Engineering, 2016, 143: 158-170.
|
[11] |
袁俊亮, 邓金根, 张定宇, 等. 页岩气储层可压裂性评价技术[J]. 石油学报, 2013, 34(3): 523-527.
YUAN Junliang, DENG Jin'gen, ZHANG Dingyu, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3): 523-527.
|
[12] |
赵金洲, 许文俊, 李勇明, 等. 页岩气储层可压性评价新方法[J]. 天然气地球科学, 2015, 26(6): 1165-1172.
ZHAO Jinzhou, XU Wenjun, LI Yongming, et al. A new method for fracability evaluation of shale-gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(6): 1165-1172.
|
[13] |
刘致水, 孙赞东. 新型脆性因子及其在泥页岩储集层预测中的应用[J]. 石油勘探与开发, 2015, 42(1): 117-124.
LIU Zhishui, SUN Zandong. New brittleness indexes and their application in shale/clay gas reservoir prediction[J]. Petroleum Exploration and Development, 2015, 42(1): 117-124.
|
[14] |
何建华, 李勇, 邓虎成, 等. 基于多元力学实验的深层页岩气储层脆性影响因素分析与定量评价[J]. 天然气地球科学, 2022, 33(7): 1102-1116.
HE Jianhua, LI Yong, DENG Hucheng, et al. Quantitative evaluation and influencing factors analysis of the brittleness of deep shale reservoir based on multiple rock mechanics experiments[J]. Natural Gas Geoscience, 2022, 33(7): 1102-1116.
|
[15] |
徐火龙, 赵迪斐. 深层页岩储层脆性评价及综合脆性指标评价优化路径研究: 以Z-3井五峰组—龙马溪组为例[J]. 非常规油气, 2023, 10(1): 84-92.
XU Huolong, ZHAO Difei. Research on brittleness evaluation of deep shale reservoirs and optimization approach of comprehensive brittleness index evaluation: a case study of Wufeng-Longmaxi formation from well Z-3[J]. Unconventional Oil & Gas, 2023, 10(1): 84-92.
|
[16] |
孔令运, 宋广朋, 蒋恕, 等. 深层页岩微观力学特征及控制机理: 以涪陵地区平桥区块JYA井深层页岩为例[J]. 石油实验地质, 2024, 46(4): 683-697. doi: 10.11781/sysydz202404683
KONG Lingyun, SONG Guangpeng, JIANG Shu, et al. Micromechanical characteristics and controlling mechanism of deep shale: a case study of well JYA in Pingqiao block, Fuling area[J]. Petroleum Geology & Experiment, 2024, 46(4): 683-697. doi: 10.11781/sysydz202404683
|
[17] |
窦亮彬, 杨浩杰, XIAO Yingjian, 等. 页岩储层脆性评价分析及可压裂性定量评价新方法研究[J]. 地球物理学进展, 2021, 36(2): 576-584.
DOU Liangbin, YANG Haojie, XIAO Yingjian, et al. Probability study of formation brittleness and new quantitative evaluation of fracability for shale reservoirs[J]. Progress in Geophysics, 2021, 36(2): 576-584.
|
[18] |
CHEN Hongsong, ZHANG Yongpeng, CAO Yongrui, et al. Security issues and defensive approaches in deep learning frameworks[J]. Tsinghua Science and Technology, 2021, 26(6): 894-905.
|
[19] |
RADWAN A E, WOOD D A, RADWAN A A. Machine learning and data-driven prediction of pore pressure from geophysical logs: a case study for the Mangahewa gas field, New Zealand[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(6): 1799-1809.
|
[20] |
FENG Shaoke, XIE Runcheng, RADWAN A E, et al. Accurate determination of water saturation in tight sandstone gas reservoirs based on optimized Gaussian process regression[J]. Marine and Petroleum Geology, 2023, 150: 106149.
|
[21] |
ELHAIJA W A, AL-HAIJA Q A. A novel dataset and lightweight detection system for broken bars induction motors using optimizable neural networks[J]. Intelligent Systems with Applications, 2023, 17: 200167.
|
[22] |
NEGARA A, ALI S S, AL DHAMEN A, et al. Data-driven brittleness index prediction from elemental spectroscopy and petrophysical properties using support-vector regression[C]//SPWLA 58th Annual Logging Symposium. Oklahoma: SPWLA, 2017.
|
[23] |
FENG Shaoke, XIE Runcheng, ZHOU Wen, et al. A new method for logging identification of fluid properties in tight sandstone gas reservoirs based on gray correlation weight analysis: a case study of the Middle Jurassic Shaximiao Formation on the eastern slope of the Western Sichuan Depression, China[J]. Interpretation, 2021, 9(4): T1167-T1181.
|
[24] |
AHMADOV J. Utilizing data-driven models to predict brittleness in Tuscaloosa marine shale: a machine learning approach[C]//SPE Annual Technical Conference and Exhibition. Dubai: SPE, 2021.
|
[25] |
ORE T M. A machine learning and data-driven prediction and inversion of reservoir brittleness from geophysical logs and seismic signals: a case study in southwest Pennsylvania, central Appalachian Basin[D]. Morgantown: West Virginia University, 2020.
|
[26] |
ORE T, GAO Dengliang. Supervised machine learning to predict brittleness using well logs and seismic signal attributes: methods and application in an unconventional reservoir[C]//SEG/AAPG/SEPM First International Meeting for Applied Geoscience & Energy. Denver: SEG, 2021: 1566-1570.
|
[27] |
卢志远, 何治亮, 余川, 等. 复杂构造区页岩气富集特征: 以四川盆地东南部丁山地区下古生界五峰组—龙马溪组为例[J]. 石油与天然气地质, 2021, 42(1): 86-97.
LU Zhiyuan, HE Zhiliang, YU Chuan, et al. Characteristics of shale gas enrichment in tectonically complex regions: a case study of the Wufeng-Longmaxi formations of Lower Paleozoic in southeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 86-97.
|
[28] |
管树巍, 梁瀚, 姜华, 等. 四川盆地中部主干走滑断裂带及伴生构造特征与演化[J]. 地学前缘, 2022, 29(6): 252-264.
GUAN Shuwei, LIANG Han, JIANG Hua, et al. Characteristics and evolution of the main strike-slip fault belts of the central Sichuan Basin, southwestern China, and associated structures[J]. Earth Science Frontiers, 2022, 29(6): 252-264.
|
[29] |
WANG Enze, GUO Tonglou, LI Maowen, et al. Exploration potential of different lithofacies of deep marine shale gas systems: insight into organic matter accumulation and pore formation mechanisms[J]. Journal of Natural Gas Science and Engineering, 2022, 102: 104563.
|
[30] |
熊亮. 川南威荣页岩气田五峰组—龙马溪组页岩沉积相特征及其意义[J]. 石油实验地质, 2019, 41(3): 326-332.
XIONG Liang. Characteristics and significance of sedimentary facies of Wufeng-Longmaxi formation shale in Weirong shale gas field, southern Sichuan Basin[J]. Petroleum Geology & Experiment, 2019, 41(3): 326-332.
|
[31] |
郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36.
GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.
|
[32] |
谢润成, 邓昆, 周国晓, 等. 四川盆地川西坳陷东坡地区下侏罗统大安寨段储层裂缝分布预测[J]. 石油实验地质, 2024, 46(4): 855-867. doi: 10.11781/sysydz202404855
XIE Runcheng, DENG Kun, ZHOU Guoxiao, et al. Prediction of fracture distribution in the Lower Jurassic Da'anzhai Member on the eastern slope of the Western Sichuan Depression, Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(4): 7855-86. doi: 10.11781/sysydz202404855
|
[33] |
黄滔, 李瑞雪, 邓虎成, 等. 四川盆地川西坳陷深部致密砂岩储层地应力场预测及分区评价: 以新场—丰谷地区须家河组二段为例[J]. 石油实验地质, 2024, 46(6): 1198-1214.
HUANG Tao, LI Ruixue, DENG Hucheng, et al. Prediction and zoning evaluation of in-situ stress field in deep tight sandstone reservoirs of Western Sichuan Depression, Sichuan Basin: a case study of the second member of Xujiahe Formation in Xinchang and Fenggu area[J]. Petroleum Geology & Experiment, 2024, 46(6): 1198-1214.
|
[34] |
陈祖庆, 郭旭升, 李文成, 等. 基于多元回归的页岩脆性指数预测方法研究[J]. 天然气地球科学, 2016, 27(3): 461-469.
CHEN Zuqing, GUO Xusheng, LI Wencheng, et al. Study on shale brittleness index prediction based on multivariate regression method[J]. Natural Gas Geoscience, 2016, 27(3): 461-469.
|
[35] |
孙川翔, 聂海宽, 苏海琨, 等. 温压耦合作用下四川盆地深层龙马溪组页岩孔渗和岩石力学特征[J]. 石油勘探与开发, 2023, 50(1): 77-88.
SUN Chuanxiang, NIE Haikuan, SU Haikun, et al. Porosity, permeability and rock mechanics of Lower Silurian Longmaxi Formation deep shale under temperature-pressure coupling in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(1): 77-88.
|
[36] |
RAHIMZADEH KIVI I, AMERI M, MOLLADAVOODI H. Shale brittleness evaluation based on energy balance analysis of stress-strain curves[J]. Journal of Petroleum Science and Engineering, 2018, 167: 1-19.
|
[37] |
张昊天. 海相高成熟页岩储层岩石力学特征及脆性评价技术[D]. 成都: 成都理工大学, 2019: 110-125.
ZHANG Haotian. The evaluation technology of rock mechanics and brittleness characteristics for marine high mature shale reservoir[D]. Chengdu: Chengdu University of Technology, 2019: 110-125.
|
[38] |
HUO Zhipeng, ZHANG Jinchuan, LI Pei, et al. An improved evaluation method for the brittleness index of shale and its application: a case study from the Southern North China Basin[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 47-55.
|
[39] |
蒋廷学, 卞晓冰, 王海涛, 等. 深层页岩气水平井体积压裂技术[J]. 天然气工业, 2017, 37(1): 90-96.
JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1): 90-96.
|
[40] |
李庆辉, 李少轩, 刘伟洲. 深层页岩气储层岩石力学特性及对压裂改造的影响[J]. 特种油气藏, 2021, 28(3): 130-138.
LI Qinghui, LI Shaoxuan, LIU Weizhou. Rock mechanical properties of deep shale gas reservoirs and their influence on fracturing stimulation[J]. Special Oil & Gas Reservoirs, 2021, 28(3): 130-138.
|
[41] |
刁海燕. 泥页岩储层岩石力学特性及脆性评价[J]. 岩石学报, 2013, 29(9): 3300-3306.
DIAO Haiyan. Rock mechanical properties and brittleness evaluation of shale reservoir[J]. Acta Petrologica Sinica, 2013, 29(9): 3300-3306.
|
[42] |
MASRI M, SIBAI M, SHAO J F, et al. Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 185-191.
|
[43] |
张军, 艾池, 李玉伟, 等. 基于岩石破坏全过程能量演化的脆性评价指数[J]. 岩石力学与工程学报, 2017, 36(6): 1326-1340.
ZHANG Jun, AI Chi, LI Yuwei, et al. Brittleness evaluation index based on energy variation in the whole process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1326-1340.
|
[44] |
陈国庆, 赵聪, 魏涛, 等. 基于全应力—应变曲线及起裂应力的岩石脆性特征评价方法[J]. 岩石力学与工程学报, 2018, 37(1): 51-59.
CHEN Guoqing, ZHAO Cong, WEI Tao, et al. Evaluation method of brittle characteristics of rock based on full stress-strain curve and crack initiation stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 51-59.
|
[45] |
尹帅, 单钰铭, 王哲, 等. Hoek-Brown准则在岩石抗压强度测井解释中的应用[J]. 桂林理工大学学报, 2014, 34(4): 659-665.
YIN Shuai, SHAN Yuming, WANG Zhe, et al. Application of Hoek-Brown criterion in rock compressive strength logging interpretation[J]. Journal of Guilin University of Technology, 2014, 34(4): 659-665.
|
[46] |
陈勉, 金衍, 张广清. 石油工程岩石力学[M]. 北京: 科学出版社, 2008.
CHEN Mian, JIN Yan, ZHANG G Q. Rock mechanics in petroleum engineering[M]. Beijing: Science Press, 2008.
|