QUANTITATIVE CALCULATION OF HYDROCARBON EXPULSIVE COEFFICIENT OF COAL FORMATION——TAKE WELL KANGGU-4 IN THE EAST OF LINQING DEPRESSION AS AN EXAMPLE
-
摘要: 煤层作为一种重要的煤成气源岩和特殊的储集岩,在热演化程度一定的前提下,其生气量和甲烷生成量是一定的,其吸附气量与排出量互为增减,并处于动态平衡。根据这一认识,首次提出定量计算煤层排烃系数的思路与方法。利用热压模拟试验确定煤的不同显微组分的生气量;针对不同地区、不同层位煤层显微组分组成不同的特点,提出采用公式法计算煤层的甲烷生成量;同时重点对Kim建立的煤层甲烷含量与煤的变质程度和埋深的关系曲线进行了计算机拟合,得到不同演化阶段埋深与吸附气量的关系曲线和方程,用以预测煤层的含气量。以临清坳陷东部康古4井区石炭—二叠系煤层为例进行了煤层排烃系数的计算,计算出的甲烷生气量与模拟甲烷生气量可比性较好,但仍存在小于5%的误差;计算出的煤层排烃系数随煤层成熟度的增高而增大,由低演化阶段的77%逐渐增至高演化阶段的90%以上。Abstract: Coal formation is not only an important source rock but also a kind of important reservoir of coal-formed gas.In a definite thermoevolutional degree,the generated gas quantity and methane quantity are also definite.The adsorption quantity and the expulsion quantity are convertible and in a dynamic equilibrium state.The method of calculating compulsive coefficient can be obtained according to this understanding.In this article,a method to calculate the gas-generated quantity was put forward based on the thermal-pressure simulating tests,by which the gas-generated quantities of different microlithotypes in different coal formations in different areas can be determined.At the same time,a way to determine the coal formation absorption quantity is introduced briefly.The curve showing the relations of coal formation methane content and it's metamorphic grade and burial depth developed by Kim was fitted using computer.A series of curves showing the relationship between burial depth and absorption quantity during different evolutional periods are gotten.These can be used to predict gas-generated quantities.All the methods have been used to calculate the gas-generated quantity of Permo-Carboniferous coal formation and absorption coefficient in well Kanggu-4 area in the east of Linqing Depression.The calculated methane quantity matches the simulated methane quantity with the error less than 5%.The calculated hydrocarbon expulsive coefficients are increased with increased maturities,from 77% in the low evolutional period to 99% in the high evolutional period.
-
[1] 张洪年,罗荣,李维林.中国煤成气资源预测[A].见:地质矿产部石油地质研究所.石油与天然气地质文集(1)[C] ,北京:地质出版社,1988.270~283 [2] 李明潮,张伍侪.中国主要煤田的浅层煤成气[M].北京:科学出版社,1990.120~130 [3] 杨申镳,徐春华,宋国奇.煤层气勘探与开发[M].山东:石油大学出版社,1994.1~101 [4] 钱凯,赵庆波,汪泽成等.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,1997.1~188 [5] 张建博,王红岩.山西沁水盆地煤层气有利区预测[M].徐州:中国矿业大学出版社,1999.26~49 [6] Tissot B P,威尔特D H.石油形成与分布[M].徐永元译.北京:石油工业出版社,1989.1~469 [7] 李生杰.褐煤煤化作用模拟试验及其地质意义[A].见:地质矿产部石油地质研究所.石油与天然气地质文集(1)[C] ,北京:地质出版社,1988.295~302 [8] 张文正,刘桂霞.低阶煤及煤岩显微组分的生烃模拟试验[A].见:煤成气地质研究编委会.煤成气地质研究[M].北京:石油工业出版社,1987.222~228 [9] 关德师,戚厚发,甘利灯.煤和煤系泥岩产气率试验结果讨论[A].见:煤成气地质研究编委会.煤成气地质研究[M].北京:石油工业出版社,1987.182~193 [10] 张福礼,黄舜兴,杨昌贵等.鄂尔多斯盆地天然气地质[M].北京:地质出版社,1994.81~84 [11] 中国石油天然气总公司勘探局.石油地球化学进展[M].北京:石油工业出版社,1998.1~102 [12] 刘全有,刘文汇,秦胜飞.煤岩及其显微组分热模拟成气特征[J].石油实验地质,2002,24(2):147~151 [13] 李荣西.煤源岩单组分化学结构及生烃性定量分析[J].石油实验地质,2001,23(1):84~86,107 [14] 何伟钢,金奎励,郝多虎.煤中单组分湿式高压釜热模拟实验研究——以海拉尔盆地伊敏组褐煤为例[J].石油实验地质,2004,26(1):89~93 [15] Kim A G.Estimating the methane content of bituminous coalbed from absorption data[A].In:U S Bureau of Mines.Report of Investigation[C] ,Washington D C:U S Bureau of Mines,1977.8245 [16] Eddy C E,Rightmire C T,Byrer,C W.Relationship of methane content of coal rang and depth:theroretical vsobserved[A].In:SPE/DOE.Unconventional gas recovery symposium[C] ,Pittsburgh:SPEIDOE,1982.117~122 [17] 张新民,张遂安,钟玲文.中国的煤层甲烷[M].西安:陕西科学技术出版社,1991.1~294 [18] 柳忠泉,邱连贵,周桂芹等.临清坳陷东部构造变动特征及控制作用[J].石油实验地质,2004,26(1):31~34 [19] 徐春华.TTI法恢复地层厚度应用实例[J].石油地球物理勘探,1996,31(1):131~135 [20] 向奎,闫书忠.济阳坳陷煤型气源岩特征及资源前景[J].石油勘探与开发,1996,23(5):11~15 [21] 秦建中,贾蓉芬,郭爱明等.华北地区煤系烃源层油气生成、运移、评价[M].北京:科学出版社,2000.1~365 [22] 刘洪林,赵国良,王红岩.中国高煤阶地区的煤层气勘探理论与实践[J].石油实验地质,2004,26(5):411~414,421
计量
- 文章访问数: 587
- HTML全文浏览量: 57
- PDF下载量: 292
- 被引次数: 0