ZHAO Jingzhou, LUO Jihong, SHI Baohong, PANG Wen. STUDY ON THE RESERVOIR-FORMING SYSTEMS OF THE TARIM BASIN[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2002, 24(4): 311-316. doi: 10.11781/sysydz200204311
Citation: ZHAO Jingzhou, LUO Jihong, SHI Baohong, PANG Wen. STUDY ON THE RESERVOIR-FORMING SYSTEMS OF THE TARIM BASIN[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2002, 24(4): 311-316. doi: 10.11781/sysydz200204311

STUDY ON THE RESERVOIR-FORMING SYSTEMS OF THE TARIM BASIN

doi: 10.11781/sysydz200204311
  • Received Date: 2001-04-09
  • Rev Recd Date: 2002-08-01
  • Publish Date: 2002-07-25
  • The reservoir-forming system (or named the hydrocarbon migration-accumulation system) is defined as a relatively independent system of hydrocarbon migration and accumulation within a petroleum system. The reservoir-forming system is also a natural unit of petroleum exploration and assessment, and its place in a petroliferous basin is just between a petroleum system and a play. The Tarim is a basin with multiple reservoir-forming systems within a petroleum system. In the Manjiaer petroleum system of the craton area, there exists at least three large reservoir-forming systems, i.e., the North Tarim, Central Tarim and West Manjiaer systems. And the North Tarim can be further divided into Lunnan and some other reservoir-forming systems. The Lunnan reservoir-forming system is actually composed of three subsystems, namely, the Ordovicion primary and se condary reservoir-forming subsystem, the Carboniferous overpressure semi closed reservoir-forming subsystem and the Triassic Jurassic secondary reservoir-forming subsystem where most oilfields are the results of oil re migration from the Ordovician and Carboniferous reservoirs along the newly formed normal faults nearby driven by gas intrusion. The Central Tarim includes two reservoir-forming systems named the Central Faulted Belt primary and secondary reservoir-forming system and the North Slope primary reservoir-forming system, and the latter can be subdivided into the Ordovicion and Carboniferous hydrocarbon migration-accumulation subsystems, in each of which vertical and lateral migration and accumulation is predominated respectively. In the Kuche foreland petroleum system, three reservoir-forming systems are distinguished, i.e., the North Kuche Slope normal pressure open system, the Central Thrust Belt normal and over pressure open closed system, and the Luntai normal pressure open reservoir-forming system. And the Central Thrust Belt system can be subdivided into the above Tertiary seal and the under Tertiary seal two subsystems. In the above Tertiary seal subsystem, se condary oil reservoirs are mainly formed; whereas, the under Tertiary seal subsystem is the character of over pressure gas accumulation.

     

  • loading
  • [1]
    周兴熙. 塔里木盆地天然气的成藏系统及流体特性[A].戴金星,等.天然气地质研究新进展[C]. 北京:石油工业出版社,1997.85-99.
    [2]
    赵文智,何登发. 中国复合含油气系统的概念及其意义[J]. 勘探家,2000,5(3):1-11.
    [3]
    赵文智,何登发,池英柳,等. 中国复合含油气系统的基本特征与勘探技术[J]. 石油学报,2001,22(1): 6-13.
    [4]
    何登发,赵文智,雷振宇,等. 中国叠合型盆地复合含油气系统的基本特征[J]. 地学前缘,2000,7(3):23-38.
    [5]
    Demaison G, Huizinga B J. Genetic classification of petroleum systems[J]. AAPG Bulletin, 1991, 75(10): 1626-1643.
    [6]
    Magoon L B, Dow W G. The petroleum system: from source to trap[J]. AAPG Memoir 60, 1994: 3-24.
    [7]
    赵文智,何登发,李伟,等. 含油气系统的内涵与描述方法[A].胡见义,赵文智.中国含油气系统的应用与进展[C]. 北京:石油工业出版社,1997.9-24.
    [8]
    赵文智,何登发,李小地,等. 石油地质综合研究导论[M]. 北京:石油工业出版社,1999.
    [9]
    Dow W G. Application of oil correlation and source rock data to exploration in Williston basin[J]. AAPG Bulletin, 1974, 58(7): 1253-1262.
    [10]
    Perrodon A. Dynamics of oil and gas accumulation[M]. Pua, Elf Aquitaine, 1983. 187-210.
    [11]
    Magoon L B. Identified petroleum systems within the United States[A].Magoon L B. The petroleum systems-status of research and methods[J]. USGS Bulletin, 1992, 2007: 2-11.
    [12]
    田世澄,陈建渝,张树林,等. 论成藏动力学系统[J]. 勘探家,1996,1(2):20-24.
    [13]
    田世澄,陈永进,张兴国,等. 论成藏动力系统中的流体动力学机制[J]. 地学前缘,2001,8(4):329-336.
    [14]
    张树林,田世澄,陈建渝. 断裂构造与成藏动力系统[J]. 石油与天然气地质,1997,18(4):261-266.
    [15]
    康永尚,王捷. 流体动力系统与油气成藏作用[J]. 石油学报,1999,20(1):30-33.
    [16]
    康永尚,庞雄奇. 油气成藏流体动力系统分析原理及应用[J]. 沉积学报,1998,16(3):80-84.
    [17]
    康玉柱. 塔里木盆地油气藏特征[J]. 石油实验地质,2000,22(2):115-120.
    [18]
    顾忆. 塔里木盆地北部塔河油田油气藏成藏机制[J]. 石油实验地质,2000,22(4):307-312.
    [19]
    赵靖舟. 油气水界面追溯法与塔里木盆地海相油气成藏期分析[J]. 石油勘探与开发,2001,28(4): 55-58..
    [20]
    赵靖舟. 油气水界面追溯法——研究烃类流体运聚成藏史的一种重要方法[J]. 地学前缘,2001,8(4):373-378.
    [21]
    赵靖舟,李秀荣. 晚期调整再成藏——塔里木盆地海相油气藏形成的一个重要特征[J]. 新疆石油地质,2002, 23(2): 89-91.
    [22]
    赵靖舟,戴金星. 库车前陆逆冲带天然气成藏期与成藏史[J]. 石油学报,2002,23(2):6-11.
    [23]
    赵靖舟,戴金星. 库车油气系统天然气成藏期与成藏史[J]. 沉积学报,2002,20(2):314-319.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (651) PDF downloads(461) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return