Volume 42 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
HUO Zhiying, HE Sheng, WANG Yongshi, GUO Xiaowen, ZHU Gangtian, ZHAO Wen. Distribution and causes of present-day overpressure of Shahejie Formation in Linnan Subsag, Huimin Sag, Bohai Bay Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(6): 938-945. doi: 10.11781/sysydz202006938
Citation: HUO Zhiying, HE Sheng, WANG Yongshi, GUO Xiaowen, ZHU Gangtian, ZHAO Wen. Distribution and causes of present-day overpressure of Shahejie Formation in Linnan Subsag, Huimin Sag, Bohai Bay Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(6): 938-945. doi: 10.11781/sysydz202006938

Distribution and causes of present-day overpressure of Shahejie Formation in Linnan Subsag, Huimin Sag, Bohai Bay Basin

doi: 10.11781/sysydz202006938
  • Received Date: 2020-01-03
  • Rev Recd Date: 2020-09-09
  • Publish Date: 2020-11-28
  • The Linnan Subsag is a main hydrocarbon generating area in the Huimin Sag of the Jiyang Depression, Bohai Bay Basin. Oilfields mainly are in the subsag or on the southern and northern faults. Overpressure is found in the Shahejie Formation. Drilling, drill stem test (DST), logging and seismic data as well as the Eaton formula were applied to study the measured pressure characteristics in sandstones, the correspondence between logging and overpressure in both sandstones and shales, and the plane and profile distributions and causes of overpressure. The overpressure depth from DST ranges 3 005 to 4 355 m in sandstones of the Shahejie Formation, the residual pressure is 7.95 to 30.45 MPa, and the pressure coefficient is 1.21 to 1.78. Logged acoustic velocity of shale and sandstone in the overpressure zone is higher than that in the normal pressure zone, and the logged resistance of the overpressure zone is also higher than that of the normal pressure zone. The upper section of the fourth member and the middle and lower sections of the third member of Shahejie Formation mainly develop low overpressure, while medium and strong overpressure also exist regionally. Vertically, overpressure zones mainly occur from 3 000 to 4 500 m depth. There are several medium and strong overpressure zones, mainly in the deep sag and fault zone. The top depth of overpre-ssure zone is 2 500-3 700 m. The high percentage of sandstone leads to the limited distribution of overpressure in the Linnan Subsag. The overpressured sandstone reservoirs in this sag are mainly oil-bearing layers. Hydrocarbon-bearingfluid charging is the main reason for the overpressure of sandstones in the third and fourth members of Shahejie Formation in the Linnan Subsag. The high-quality source rocks are deeply buried. The vitrinite reflectance of the overpressured source rocks is about 0.5% to 1.5%. It is in the oil generation stage and does not have low density characteristics, indicating that oil generation is the main reason for the pressurization of source rocks.

     

  • loading
  • [1]
    郭小文, 何生, 宋国奇, 等. 东营凹陷生油增压成因证据[J]. 地球科学(中国地质大学学报), 2011, 36(6): 1085-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106014.htm

    GUO Xiaowen, HE Sheng, SONG Guoqi, et al. Evidences of overpressure caused by oil generation in Dongying Depression[J]. Earth Science(Journal of China University of Geosciences), 2011, 36(6): 1085-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106014.htm
    [2]
    鲍晓欢, 郝芳, 方勇. 东营凹陷牛庄洼陷地层压力演化及其成藏意义[J]. 地球科学(中国地质大学学报), 2007, 32(2): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702012.htm

    BAO Xiaohuan, HAO Fang, FANG Yong. Evolution of geopressure field in Niuzhuang Sag in Dongying Depression and its effect on petroleum accumulation[J]. Earth Science(Journal of China University of Geosciences), 2007, 32(2): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702012.htm
    [3]
    赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9): 973-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm

    ZHAO Jingzhou, LI Jun, XU Zeyang. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm
    [4]
    何生, 宋国奇, 王永诗, 等. 东营凹陷现今大规模超压系统整体分布特征及主控因素[J]. 地球科学(中国地质大学学报), 2012, 37(5): 1029-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201205017.htm

    HE Sheng, SONG Guoqi, WANG Yongshi, et al. Distribution and major control factors of the present-day large-scale overpressured system in Dongying Depression[J]. Earth Science(Journal of China University of Geosciences), 2012, 37(5): 1029-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201205017.htm
    [5]
    BOWERS G L. Detecting high overpressure[J]. The Leading Edge, 2002, 21(2): 174-177. doi: 10.1190/1.1452608
    [6]
    于轶星, 庞雄奇, 陈冬霞, 等. 临南洼陷油气藏分布特征与油气富集主控因素分析[J]. 科技导报, 2011, 29(4): 30-33. doi: 10.3981/j.issn.1000-7857.2011.04.003

    YU Yixing, PANG Xiongqi, CHEN Dongxia, et al. Characteristics and main controlling factors about hydrocarbon accumulation and distribution in the Linnan Sag[J]. Science & Technology Review, 2011, 29(4): 30-33. doi: 10.3981/j.issn.1000-7857.2011.04.003
    [7]
    王永诗, 邱贻博. 济阳坳陷超压结构差异性及其控制因素[J]. 石油与天然气地质, 2017, 38(3): 430-437. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703002.htm

    WANG Yongshi, QIU Yibo. Overpressure structure dissimilarity and its controlling factors in the Jiyang Depression[J]. Oil & Gas Geology, 2017, 38(3): 430-437. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703002.htm
    [8]
    王冰, 张立宽, 李超, 等. 惠民凹陷临南洼陷古近系沙河街组超压成因机制及分布预测[J]. 石油与天然气地质, 2018, 39(4): 641-652.

    WANG Bing, ZHANG Likuan, LI Chao, et al. Mechanism and distribution prediction of abnormal high pressure of the Paleocene Shahejie Formation in Linnan Sag, Huimin Depression[J]. Oil & Gas Geology, 2018, 39(4): 641-652.
    [9]
    肖焕钦, 刘震, 赵阳, 等. 济阳坳陷地温-地压场特征及其石油地质意义[J]. 石油勘探与开发, 2003, 30(3): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200303020.htm

    XIAO Huanqin, LIU Zhen, ZHAO Yang, et al. Characteristics of geotemperature and geopressure fields in the Jiyang Depression and their significance of petroleum geology[J]. Petroleum Exploration and Development, 2003, 30(3): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200303020.htm
    [10]
    刘元晴, 曾溅辉, 周乐, 等. 惠民凹陷沙河街组地层水化学特征及其成因[J]. 现代地质, 2013, 27(5): 1110-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201305013.htm

    LIU Yuanqing, ZENG Jianhui, ZHOU Le, et al. Geochemical characteristics and origin of Shahejie Formation water in Huimin Sag[J]. Geoscience, 2013, 27(5): 1110-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201305013.htm
    [11]
    金秋月, 甘军, 卢梅, 等. 渤海湾盆地车镇凹陷地层超压成因[J]. 东北石油大学学报, 2015, 39(5): 32-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201505005.htm

    JIN Qiuyue, GAN Jun, LU Mei, et al. Analysis of the causes of formation overpressures in the Chezhen Sag of Bohai Bay Basin[J]. Journal of Northeast Petroleum University, 2015, 39(5): 32-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201505005.htm
    [12]
    VAN RUTH P, HILLIS R, TINGATE P. The origin of overpressure in the Carnarvon Basin, western Australia: implications for pore pressure prediction[J]. Petroleum Geoscience, 2004, 10(3): 247-257.
    [13]
    党雪维, 何生, 王永诗, 等. 孤北洼陷砂岩超压带分布特征及主控因素[J]. 油气地质与采收率, 2016, 23(3): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201603008.htm

    DANG Xuewei, HE Sheng, WANG Yongshi, et al. Distribution characteristics and controlling factors of the overpressure zone in sandstone reservoir of Gubei Sag[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(3): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201603008.htm
    [14]
    BOWERS G L. Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion, 1995, 10(2): 89-95.
    [15]
    杨姣, 何生, 王冰洁. 东营凹陷牛庄洼陷超压特征及预测模型[J]. 地质科技情报, 2009, 28(4): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200904007.htm

    YANG Jiao, HE Sheng, WANG Bingjie. Characteristics and prediction model of the overpressures in the Niuzhuang Sag of Dongying Depression[J]. Geological Science and Technology Information, 2009, 28(4): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200904007.htm
    [16]
    罗胜元. 沾化凹陷渤南洼陷超压系统与油气成藏研究[D]. 武汉: 中国地质大学(武汉), 2014.

    LUO Shengyuan. Study on the overpressure characteristic and hydrocarbon accumulation in Bonan Depression, Zhanhua Subbasin[D]. Wuhan: China University of Geosciences (Wuhan), 2014.
    [17]
    何生, 何治亮, 杨智, 等. 准噶尔盆地腹部侏罗系超压特征和测井响应以及成因[J]. 地球科学(中国地质大学学报), 2009, 34(3): 457-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903010.htm

    HE Sheng, HE Zhiliang, YANG Zhi, et al. Characteristics, well-log responses and mechanisms of overpressures within the Jurassic Formation in the central part of Junggar Basin[J]. Earth Science(Journal of China University of Geosciences), 2009, 34(3): 457-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903010.htm
    [18]
    EATON B A. Graphical method predicts geopressures worldwide[J]. World Oil, 1976, 183(1): 51-56.
    [19]
    GUO Xiaowen, HE Sheng, LIU Keyu, et al. Oil generation as the dominant overpressure mechanism in the Cenozoic Dongying Depression, Bohai Bay Basin, China[J]. AAPG Bulletin, 2010, 94(12): 1859-1881.
    [20]
    TEIGE G M G, HERMANRUD C, WENSAAS L, et al. The lack of relationship between overpressure and porosity in North Sea and Haltenbanken shales[J]. Marine and Petroleum Geology, 1999, 16(4): 321-335.
    [21]
    邱贻博, 王永诗, 高永进, 等. 东营、沾化凹陷压力结构差异及其影响因素[J]. 西安石油大学学报(自然科学版), 2017, 32(4): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201704004.htm

    QIU Yibo, WANG Yongshi, GAO Yongjin, et al. Difference in pressure structure of Dongying Sag and Zhanhua Sag and its control factors[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2017, 32(4): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201704004.htm
    [22]
    冯月琳, 刘华, 宋国奇, 等. 平面压降梯度计算原则及其应用[J]. 石油实验地质, 2019, 41(4): 598-605. doi: 10.11781/sysydz201904598

    FENG Yuelin, LIU Hua, SONG Guoqi, et al. Calculation and application of plane pressure decrease gradient[J]. Petroleum Geology & Experiment, 2019, 41(4): 598-605. doi: 10.11781/sysydz201904598
    [23]
    韩元佳, 何生, 宋国奇, 等. 东营凹陷超压顶封层及其附近砂岩中碳酸盐胶结物的成因[J]. 石油学报, 2012, 33(3): 385-393. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203006.htm

    HAN Yuanjia, HE Sheng, SONG Guoqi, et al. Origin of carbo-nate cements in the overpressured top seal and adjacent sandstones in Dongying Depression[J]. Acta Petrolei Sinica, 2012, 33(3): 385-393. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203006.htm
    [24]
    朱芒征, 陈建渝. 惠民凹陷临南洼陷下第三系烃源岩生烃门限[J]. 油气地质与采收率, 2002, 9(2): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200202010.htm

    ZHU Mangzheng, CHEN Jianyu. Hydrocarbon-generating threshold of the source rocks in Palaeogene of Linnan Subsag in Huimin Sag[J]. Petroleum Geology and Recovery Efficiency, 2002, 9(2): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200202010.htm
    [25]
    刘飞, 朱钢添, 何生, 等. 渤海湾盆地惠民凹陷临南洼陷沙河街组原油地球化学特征及油源对比[J]. 石油实验地质, 2019, 41(6): 855-864. doi: 10.11781/sysydz201906855

    LIU Fei, ZHU Gangtian, HE Sheng, et al. Geochemical characteristics of crude oil and oil-source correlation of Shahejie Formation in Linnan Sub-Sag, Huimin Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2019, 41(6): 855-864. doi: 10.11781/sysydz201906855
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (710) PDF downloads(139) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return