Volume 43 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LÜ Haitao, HAN Jun, ZHANG Jibiao, LIU Yongli, LI Yingtao. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(1): 14-22. doi: 10.11781/sysydz202101014
Citation: LÜ Haitao, HAN Jun, ZHANG Jibiao, LIU Yongli, LI Yingtao. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(1): 14-22. doi: 10.11781/sysydz202101014

Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area, Tarim Basin

doi: 10.11781/sysydz202101014
  • Received Date: 2019-12-10
  • Rev Recd Date: 2020-12-24
  • Publish Date: 2021-01-28
  • As a spatial geological body, a strike-slip fault zone has a physically and chemically controlled compart- mentalization effect, which can form a unique fracture-cavity system with associated pore spaces inside the fault zone. A fracture-cavity system related to ultra-deep carbonate "fault-dissolution body" developed in Shunbei area of the Tarim Basin, and its "fault-dissolution body" reservoir is closely related to fault activities. The Shunbei strike-slip fault zone was studied with previous analyses and practices. The inner structure of the strike -slip fault zone was discussed, and the origin and characteristics of "fault-dissolution body" were analyzed. The spatial distribution of the "fault-dissolution body" reservoir is constrained by the boundary of the strike-slip fault. The external contour of the reservoir is mainly controlled by the fault zone, and the width is narrow while the depth is large. The reservoir space is mainly composed of "cavity" type caverns and a seam network formed by multi-stage structural rupture, and has undergone erosion and cementation via multiple types of fluids, forming dissolution holes and various pore spaces along the fracture system, and it leads to the complexity of the internal reservoir structure of fault- dissolution body. According to the dynamic changes of fluid participation and fluid properties in the fault zone, three genetic mechanisms can be identified: fault-capacity, karst and hydrothermal fluid erosion. The formation mechanism of the "fault-dissolution body" may be one of them, or a combination of two or three types. The most essential difference between "fault-dissolution body" and karst cave reservoir is that the composition of the former fracture-cavity system and the formation of reservoir scale are closely related to the fault activity, while the latter depends mainly on the water-rock interaction and the total matter volume removed.

     

  • loading
  • [1]
    焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm

    JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm
    [2]
    漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htm

    QI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htm
    [3]
    БЕЛКИН В И, МЕДВЕДСКИЙ Р И, ZHU Qihuang. Vein type oil and gas trap[J]. Geological Science and Technology Information, 1989, 8(2): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXW202302013.htm
    [4]
    CHESTER F M, EVANS J P, BIEGEL R L. Internal structure and weakening Mechanisms of the San Andreas fault[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B1): 771-786. doi: 10.1029/92JB01866
    [5]
    罗群, 黄捍东, 庞雄奇, 等. 自然界可能存在的断层体圈闭[J]. 石油勘探与开发, 2004, 31(3): 148-150. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200403041.htm

    LUO Qun, HUANG Handong, PANG Xiongqi, et al. A kind of possible natural fault petroleum trap[J]. Petroleum Exploration and Development, 2004, 31(3): 148-150. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200403041.htm
    [6]
    鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355.

    LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355.
    [7]
    鲁新便, 杨敏, 汪彦, 等. 塔里木盆地北部"层控"与"断控"型油藏特征: 以塔河油田奥陶系油藏为例[J]. 石油实验地质, 2018, 40(4): 461-469. doi: 10.11781/sysydz201804461

    LU Xinbian, YANG Min, WANG Yan, el al. Geological characteristics of 'strata-bound' and 'fault-controlled' reservoirs in the northern Tarim Basin: taking the Ordovician reservoirs in the Tahe Oil Field as an example[J]. Petroleum Geology & Experiment, 2018, 40(4): 461-469. doi: 10.11781/sysydz201804461
    [8]
    文山师, 李海英, 洪才均, 等. 顺北油田断溶体储层地震响应特征及描述技术[J]. 断块油气田, 2020, 27(1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202001010.htm

    WEN Shanshi, LI Haiying, HONG Caijun, et al. Technology of seismic response characteristics and description of fault-karst reservoir in Shunbei Oilfield[J]. Fault-Block Oil and Gas Field, 2020, 27(1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202001010.htm
    [9]
    程洪, 汪彦, 鲁新便. 塔河地区深层碳酸盐岩断溶体圈闭类型及特征[J]. 石油学报, 2020, 41(3): 301-309. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003007.htm

    CHENG Hong, WANG Yan, LU Xinbian. Classifications and characteristics of deep carbonate fault-karst trap in Tahe area[J]. Acta Petrolei Sinica, 2020, 41(3): 301-309. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003007.htm
    [10]
    赵锐, 赵腾, 李慧莉, 等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏, 2019, 26(5): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201905002.htm

    ZHAO Rui, ZHAO Teng, LI Huili, et al. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201905002.htm
    [11]
    王斌, 赵永强, 何生, 等. 塔里木盆地顺北5号断裂带北段奥陶系油气成藏期次及其控制因素[J]. 石油与天然气地质, 2020, 41(5): 965-974. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005008.htm

    WANG Bin, ZHAO Yongqiang, HE Sheng, et al. Hydrocarbon accumulation stages and their controlling factors in the northern Ordovician Shunbei 5 fault zone, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 965-974. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005008.htm
    [12]
    马永生, 何治亮, 赵培荣, 等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912017.htm

    MA Yongsheng, HE Zhiliang, ZHAO Peirong, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912017.htm
    [13]
    李映涛, 漆立新, 张哨楠, 等. 塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J]. 石油学报, 2019, 40(12): 1470-1484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912005.htm

    LI Yingtao, QI Lixin, ZHANG Shaonan, et al. Characteristics and development mode of the middle and lower Ordovician fault-karst reservoir in Shunbei area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12): 1470-1484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912005.htm
    [14]
    曲占庆, 林强, 郭天魁, 等. 顺北油田碳酸盐岩酸蚀裂缝导流能力实验研究[J]. 断块油气田, 2019, 26(4): 533-536. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201904027.htm

    QU Zhanqing, LIN Qiang, GUO Tiankui, et al. Experimental study on acid fracture conductivity of carbonate rock in Shunbei Oilfield[J]. Fault-Block Oil and Gas Field, 2019, 26(4): 533-536. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201904027.htm
    [15]
    韩俊, 曹自成, 邱华标, 等. 塔中北斜坡奥陶系走滑断裂带与岩溶储集体发育模式[J]. 新疆石油地质, 2016, 37(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201602005.htm

    HAN Jun, CAO Zicheng, QIU Huabiao, et al. Model for strike-slip fault zones and karst reservoir development of Ordovician in northern slope of Tazhong Uplift, Tarim Basin[J]. Xinjiang Petroleum Geology, 2016, 37(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201602005.htm
    [16]
    李映涛, 叶宁, 袁晓宇, 等. 塔里木盆地顺南4井中硅化热液的地质与地球化学特征[J]. 石油与天然气地质, 2015, 36(6): 934-945. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506010.htm

    LI Yingtao, YE Ning, YUAN Xiaoyu, et al. Geological and geoche-mical characteristics of silicified hydrothermal fluids in well Shunnan 4, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(6): 934-945. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506010.htm
    [17]
    YOU Donghua, HAN Jun, HU Wenxuan, et al. Characteristics and formation mechanisms of silicified carbonate reservoirs in well SN4 of the Tarim Basin[J]. Energy Exploration & Exploitation, 2018, 36(4): 820-849.
    [18]
    黄诚. 叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别: 以塔里木盆地顺北地区为例[J]. 石油实验地质, 2019, 41(3): 379-389. doi: 10.11781/sysydz201903379

    HUANG Cheng. Multi-stage activity characteristics of small-scale strike-slip faults in superimposed basin and its identification method: a case study of Shunbei area, Tarim Basin[J]. Petroleum Geology and Experiment, 2019, 41(3): 379-389. doi: 10.11781/sysydz201903379
    [19]
    郑晓丽, 安海亭, 王祖君, 等. 哈拉哈塘地区走滑断裂与断溶体油藏特征[J]. 新疆石油地质, 2019, 40(4): 449-455. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201904008.htm

    ZHENG Xiaoli, AN Haiting, WANG Zujun, et al. Characteristics of strike-slip faults and fault-karst carbonate reservoirs in Halahatang area, Tarim basin[J]. Xinjiang Petroleum Geology, 2019, 40(4): 449-455. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201904008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (1065) PDF downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return