JIANG Yun, XU Guoqing, SHI Yang, YU Yue, WANG Tianyi, ZENG Xinghang, ZHENG Wei. Forced imbibition in tight sandstone cores[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(1): 144-153. doi: 10.11781/sysydz202101144
Citation: JIANG Yun, XU Guoqing, SHI Yang, YU Yue, WANG Tianyi, ZENG Xinghang, ZHENG Wei. Forced imbibition in tight sandstone cores[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(1): 144-153. doi: 10.11781/sysydz202101144

Forced imbibition in tight sandstone cores

doi: 10.11781/sysydz202101144
  • Received Date: 2020-06-19
  • Rev Recd Date: 2020-10-10
  • Publish Date: 2021-01-28
  • Spontaneous imbibition (SI) generally occurs under forced pressure (pressure difference between hydraulic fluid pressure and original pore pressure) during a shut-in period. However, the experimental study of SI is commonly performed at atmospheric pressure and the effect of forced pressure is often neglected. In this study, the mechanism of SI in tight sandstone samples under forced pressure (forced imbibition, FI) was studied. A new experimental method for forced imbibition was firstly constructed based on low-field nuclear magnetic resonance(LF-NMR) measurements. After that, a correlation between SI and FI was discussed. Finally, a new dimensionless time model considering the effect of forced pressure for FI was constructed. The results showed that 96.76%-97.25% wt% of the oil was distributed in nano-pores (0.1 ms ≤ T2 ≤ 100 ms) of core samples, occupying the major pore space. The ultimate oil recovery for FI was significantly improved relative to that of SI, which was associated with the synergetic effect of enhanced SI and compaction. The new dimensionless time model for FI was proved to be effective and it provides a new method to calculate shut-in time at field scale.

     

  • [1]
    郭秋麟, 武娜, 陈宁生, 等. 鄂尔多斯盆地延长组第7油层组致密油资源评价[J]. 石油学报, 2017, 38(6): 658-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201706005.htm

    GUO Qiulin, WU Na, CHEN Ningsheng, et al. An assessment of tight oil resource in 7th oil reservoirs of Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2017, 38(6): 658-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201706005.htm
    [2]
    李忠兴, 屈雪峰, 刘万涛, 等. 鄂尔多斯盆地长7段致密油合理开发方式探讨[J]. 石油勘探与开发, 2015, 42(2): 217-221. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201502012.htm

    LI Zhongxing, QU Xuefeng, LIU Wantao, et al. Development modes of Triassic Yanchang Formation Chang 7 member tight oil in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 217-221. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201502012.htm
    [3]
    GHANBARI E, ABBASI M A, DEHGHANPOUR H, et al. Flowback volumetric and chemical analysis for evaluating load reco-very and its impact on early-time production[C]//SPE Unconventional Resources Conference Canada. Calgary, Alberta: Society of Petroleum Engineers, 2013.
    [4]
    CARPENTER C. Impact of liquid loading in hydraulic fractures on well productivity[J]. Journal of Petroleum Technology, 2013, 65(11): 162-165. doi: 10.2118/1113-0162-JPT
    [5]
    GHANBARI E, DEHGHANPOUR H. The fate of fracturing water: a field and simulation study[J]. Fuel, 2016, 163: 282-294. doi: 10.1016/j.fuel.2015.09.040
    [6]
    WANG Dongmei, BUTLER R, LIU Hong, et al. Flow-rate behavior and imbibition in shale[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(4): 485-492.
    [7]
    DEHGHANPOUR H, LAN Q, SAEED Y, et al. Spontaneous imbibition of brine and oil in gas shales: effect of water adsorption and resulting microfractures[J]. Energy Fuels, 2013, 27(6): 3039-3049. doi: 10.1021/ef4002814
    [8]
    KATHEL P, MOHANTY K K. Wettability alteration in a tight oil reservoir[J]. Energy Fuels, 2013, 27(11): 6460-6468. doi: 10.1021/ef4012752
    [9]
    HABIBI A, XU M, DEHGHANPOUR H, et al. Understanding rock-fluid interactions in the montney tight oil play[C]//SPE/CSUR Unconventional Resources Conference. Calgary, Alberta, Canada: SPE, 2015.
    [10]
    HABIBI A, BINAZADEH M, DEHGHANPOUR H, et al. Advances in understanding wettability of tight oil formations[C]//SPE AnnualTechnical Conference and Exhibition. Houston, Texas: Society of Petroleum Engineers, 2015.
    [11]
    RAEESI B. Measurement and pore-scale modelling of capillary pressure hysteresis in strongly water-wet sandstones[D]. Laramie, Wyoming: University of Wyoming, 2012.
    [12]
    HATIBOGLU C U, BABADAGLI T. Oil recovery by counter-current spontaneous imbibition: effects of matrix shape factor, gravity, IFT, oil viscosity, wettability, and rock type[J]. Journal of Petroleum Science and Engineering, 2007, 59(1/2): 106-122.
    [13]
    AL-ATTAR H H. Experimental study of spontaneous capillary imbibition in selected carbonate core samples[J]. Journal of Petroleum Science and Engineering, 2010, 70(3/4): 320-326.
    [14]
    IFFLY R, ROUSSELET D C, VERMEULEN J L. Fundamental study of imbibition in fissured oil fields[C]//Fall Meeting of the Society of Petroleum Engineers of AIME. San Antonio, Texas: Society of Petroleum Engineers, 1972.
    [15]
    FATT I. The effect of overburden pressure on relative permeability[J]. Journal of Petroleum Technology, 1953, 5(10): 15-16. doi: 10.2118/953325-G
    [16]
    TIAN Xiaofeng, CHENG Linsong, CAO Renyi, et al. A new approach to calculate permeability stress sensitivity in tight sandstone oil reservoirs considering micro-pore-throat structure[J]. Journal of Petroleum Science and Engineering, 2015, 133: 576-588. doi: 10.1016/j.petrol.2015.05.026
    [17]
    SHAR A M, MAHESAR A A, CHANDIO A D, et al. Impact of confining stress on permeability of tight gas sands: an experimental study[J]. Journal of Petroleum Exploration and Production Technology, 2017, 7(3): 717-726. doi: 10.1007/s13202-016-0296-9
    [18]
    ZHANG Xiaoyun, MORROW N R, MA Shouxiang. Experimental verification of a modified scaling group for spontaneous imbibition[J]. SPE Reservoir Engineering, 1996, 11(4): 280-285. doi: 10.2118/30762-PA
    [19]
    MA Shouxiang, MORROW N R, ZHANG Xiaoyun. Generalized scaling of spontaneous imbibition data for strongly water-wet systems[J]. Journal of Petroleum Science and Engineering, 1997, 18(3/4): 165-178.
    [20]
    SCHMID K S, GEIGER S. Universal scaling of spontaneous imbibition for arbitrary petrophysical properties: water-wet and mixed-wet states and Handy's conjecture[J]. Journal of Petroleum Science and Engineering, 2013, 101: 44-61. doi: 10.1016/j.petrol.2012.11.015
    [21]
    MASON G, FISCHER H, MORROW N R, et al. Correlation for the effect of fluid viscosities on counter-current spontaneous imbibition[J]. Journal of Petroleum Science and Engineering, 2010, 72(1/2): 195-205.
    [22]
    STANDNES D C, ANDERSEN P Ø. Analysis of the impact of fluid viscosities on the rate of countercurrent spontaneous imbibition[J]. Energy & Fuels, 2017, 31(7): 6928-6940.
    [23]
    SAIDIAN M, KUILA U, RIVERA S, et al. Porosity and pore size distribution in mudrocks: a comparative study for Haynesville, Niobrara, Monterey and eastern European Silurian formations[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, Colorado: Unconventional Resources Technology Conference, 2014.
    [24]
    EL SAYED A M A, ELSAYED N A. Petrophysical properties of clastic reservoirs using NMR relaxometry and mercury injection data: Bahariya Formation, Egypt[J]. IOP Conference Series: Earth and Environmental Science, 2016, 44(4): 042018.
    [25]
    ZHAO Huawei, NING Zhengfu, WANG Qing, et al. Petrophysical characterization of tight oil reservoirs using pressure-controlled porosimetry combined with rate-controlled porosimetry[J]. Fuel, 2015, 154: 233-242. doi: 10.1016/j.fuel.2015.03.085
    [26]
    TINNI A, ODUSINA E, SULUCARNAIN I, et al. Nuclear-magnetic-resonance response of brine, oil, and methane in organic-rich shales[J]. SPE Reservoir Evaluation & Engineering, 2015, 18(3): 400-406.
    [27]
    WASHBURN E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283. doi: 10.1103/PhysRev.17.273
    [28]
    SAIDIAN M, PRASAD M. Effect of mineralogy on nuclear magnetic resonance surface relaxivity: a case study of Middle Bakken and Three Forks formations[J]. Fuel, 2015, 161: 197-206. doi: 10.1016/j.fuel.2015.08.014
    [29]
    KLINKENBERG L J. The permeability of porous media to liquids and gases[C]//. Drilling and Production Practice. New York: SPE, 1941: 200-213.
    [30]
    LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061
    [31]
    TIAB D, DONALDSON E C. Petrophysics[M]. 3rd ed. Amsterdam: Gulf Professional Publishing, 2012: 371-418.
    [32]
    LEVERETT M C. Capillary behavior in porous solids[J]. Transactions of the AIME, 1941, 142(1): 152-169. doi: 10.2118/941152-G
    [33]
    LAN Qing, GHANBARI E, DEHGHANPOUR H, et al. Water loss versus soaking time: spontaneous imbibition in tight rocks[J]. Energy Technology, 2014, 2(12): 1033-1039. doi: 10.1002/ente.201402039
  • Relative Articles

    [1]WANG Liangjun, YUE Xinxin, LI Liansheng, WANG Yanpeng. Pore development characteristics and main controlling factors of tight oil reservoir in the seventh member of Triassic Yanchang Formation, Xunyi area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1135-1144. doi: 10.11781/sysydz2024061135
    [2]ZHONG Hongli, CHEN Lihua, ZHANG Fengqi, LIANG Yongqi. Pore evolution in tight sandstone and its impact on oil saturation: a case study of Chang 6 to Chang 8 reservoirs in Triassic Yanchang Formation, Ganquan area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1145-1156. doi: 10.11781/sysydz2024061145
    [3]CHEN Shaoyun, YANG Yongqiang, QIU Longwei, WANG Xiaojuan, YANG Baoliang, Erejep HABILAXIM. Pore throat structure analysis and permeability prediction method of tight sandstone: a case study of Jurassic Shaximiao Formation in central Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(1): 202-214. doi: 10.11781/sysydz202401202
    [4]SU Hang, LI Ruixue, DENG Hucheng, QIN Yuanwei, FU Meiyan, HE Jianhua, ZENG Qinggao, SONG Linke, ZHANG Jiawei. Comprehensive evaluation of geological and engineering factors affecting fracturing effectiveness in tight sandstone reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1349-1361. doi: 10.11781/sysydz2024061349
    [5]HUANG Tao, LI Ruixue, DENG Hucheng, HE Jianhua, LI Kesai, LIU Yan, XIANG Zehou, DU Yifei, YE Tairan. Prediction and zoning evaluation of in-situ stress field in deep tight sandstone reservoirs of Western Sichuan Depression, Sichuan Basin: a case study of the second member of Xujiahe Formation in Xinchang and Fenggu area[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1198-1214. doi: 10.11781/sysydz2024061198
    [6]ZHAO Ning, WANG Liang, ZHANG Lei, SIMA Liqiang, LIU Zhiyuan, WEN Dengfeng. Mechanical properties and fracturing characteristics of tight sandstones based on granularity classification: a case study of Permian Lower Shihezi Formation, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 720-729. doi: 10.11781/sysydz202204720
    [7]SUN Yaxiong, ZHANG Tan, DING Wenlong, YAO Wei, ZHANG Chi. Application of mercury intrusion method and digital image analysis in quantitative analysis of micro-scale pores in tight sandstone reservoirs: a case study of X block in Wuqi Oil Field, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(6): 1105-1115. doi: 10.11781/sysydz2022061105
    [8]ZHONG Hongli, ZHANG Fengqi, ZHAO Zhenyu, WEI Chi, LIU Yang. Micro-scale pore-throat distributions in tight sandstone reservoirs and its constrain to movable fluid[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(1): 77-85. doi: 10.11781/sysydz202101077
    [9]YANG Wei, XIE Wuren, YU Lingjie, WEI Guoqi, JIN Hui, FAN Ming, SHEN Juehong, HAO Cuiguo, WANG Xiaodan, LIU Weihong. Dissolution experiments and geological implications of tight sandstones in the Xujiahe Formation of Upper Triassic, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(4): 655-663. doi: 10.11781/sysydz202104655
    [10]CHENG Leli, YIN Senlin, WAN Youli, WANG Jian, FENG Xinglei, LI Xueren, ZENG Shengqiang. Diagenesis and pore evolution of tight sandstone reservoirs in Upper Triassic Bagong Formation, North Qiangtang Depression, Qiangtang Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(1): 60-68. doi: 10.11781/sysydz202001060
    [11]XIAO Hui, WANG Haonan, YANG Yindi, KE Changyan, SHE Haiqin. Influence of diagenetic evolution on tight sandstone reservoir flow capacity: Chang 8 reservoir of Yanchang Formation in southern Maling, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(6): 800-811. doi: 10.11781/sysydz201906800
    [12]Zhao Shanshan, Zhang Shaonan, Wan Youli. Feldspar dissolution and its effect on reservoir in Kepingtage Formation, Shuntuoguole Low Uplift, central Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2015, 37(3): 293-299. doi: 10.11781/sysydz201503293
    [13]Lin Tong, Ran Qigui, Wei Hongxing, Sun Xiongwei, Wang Rong. Pore-throat characteristics of tight sandstones and its influence on reservoirs in Dibei area of the Kuqa Depression[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2015, 37(6): 696-703. doi: 10.11781/sysydz201506696
    [14]Li Yilong, Jia Ailin, Wu Chaodong. Diagenesis of tight sandstones and its controls on reservoirs genesis, Changling Faulted Depression, Songliao Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2014, 36(6): 698-705. doi: 10.11781/sysydz201406698
    [15]Wang Bin, Zhao Yongqiang, Wang Shuyi, Zhang Genfa, Luo Yu, Chen Xuyun, Lei lei. Characteristics and main controlling factors of tight sandstone reservoirs in Silurian of Kongquehe slope, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2013, 35(6): 615-620. doi: 10.11781/sysydz201306615
    [16]Bai Yubin, Zhao Jingzhou, Fang Chaoqiang, Liu Peng. Forming mechanism of quasi-continuous tight sandstone reservoir of Chang 6 oil-bearing formation, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2013, 35(1): 65-71. doi: 10.11781/sysydz201301065
    [17]Zhao Xin, Chen Qianglu, Sun Yuan, Shi Zheng, Chen Yue. Property and origin of tight sandstones in Middle-Upper Ordovician, northeastern Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2012, 34(5): 466-473. doi: 10.11781/sysydz201205466
    [18]Wang Xiaomei, Zhao Jingzhou, Liu Xinshe. Occurrence state and production mechanism of formation water in tight sandstone reservoirs of Sulige area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2012, 34(4): 400-405. doi: 10.11781/sysydz201204400
    [19]Ye Jun, Zhu Tong, Zhao Zejiang. A STUDY OF GAS RESERVIORS OF UPPER SHAXIMIAO FORMATION (J2s) AND ITS ORIGIN IN XINCHANG GAS FIELD, WEST SICHUAN[J]. PETROLEUM GEOLOGY & EXPERIMENT, 1998, 20(4): 332-339. doi: 10.11781/sysydz199804332
    [20]Wang Wenyao, Cao Jiayu, Guo Guang, Qiu Qifu. FACTOR ANALYSIS ON THE PORE TESTURE OF THE TIGHT SANDSTONES IN THE LONGTAN FORMATION(JIANGSU)[J]. PETROLEUM GEOLOGY & EXPERIMENT, 1994, 16(2): 164-171. doi: 10.11781/sysydz199402164
  • Cited by

    Periodical cited type(20)

    1. 张涛,李宪鹏,梁健美,王德晴. 非常规致密油储层压裂增能一体化技术分析. 中外能源. 2024(01): 70-76 .
    2. 彭岩,王一博,雷征东,王笑涵,汪大伟,张广清,周大伟. 致密油藏驱渗结合采油可行性研究. 科学技术与工程. 2024(04): 1448-1458 .
    3. 蒋廷学,沈子齐,王良军,齐自立,肖博,秦秋萍,范喜群,王勇,曲海. 考虑渗吸效应的页岩油井体积压裂用液强度优化方法——以南襄盆地泌阳凹陷X-1井为例. 石油勘探与开发. 2024(03): 588-596 .
    4. 马超,黄晓依,高胜天,刘鑫,王诚. 核磁共振技术在致密岩心孔隙量化表征中的应用. 中国科技论文. 2024(05): 540-546+574 .
    5. JIANG Tingxue,SHEN Ziqi,WANG Liangjun,QI Zili,XIAO Bo,QIN Qiuping,FAN Xiqun,WANG Yong,QU Hai. Optimization method of fracturing fluid volume intensity for SRV fracturing technique in shale oil reservoir based on forced imbibition: A case study of well X-1 in Biyang Sag of Nanxiang Basin, China. Petroleum Exploration and Development. 2024(03): 674-683 .
    6. 孙志刚,于春磊,陈辉,张民,孙强,贾丽华,孙超,陈挺,张红欣,范菲,张礼臻. 陆相页岩油开发实验技术现状与展望. 油气地质与采收率. 2024(05): 186-198 .
    7. 蒲春生,康少飞,蒲景阳,谷潇雨,高振东,王永东,王凯. 中国致密油藏水平井注水吞吐技术进展与发展趋势. 石油学报. 2023(01): 188-206 .
    8. 曾星航,祁尚义,许国庆,江昀,李秀云. 带压渗吸核磁共振实验研究——以江汉盆地潜江凹陷潜江组泥质白云岩为例. 油气地质与采收率. 2023(01): 122-128 .
    9. 刘洋,张宫,覃莹瑶,张家成,李森. 磁场强度及磁场梯度对岩心核磁共振T_2谱测量结果的影响. 石油实验地质. 2023(02): 378-384 . 本站查看
    10. 李腾,高辉,王美强,冯永兵,王琛,程志林. 基于核磁共振孔隙划分的致密油藏自发渗吸原油可动性研究. 力学学报. 2023(03): 643-655 .
    11. 尤启东. 低渗岩心自发同向渗吸启动压力梯度计算方法. 科学技术与工程. 2023(14): 5978-5987 .
    12. 马超,任文东,岳泉,刘炜,黄晓依. 致密储层岩心静态渗吸规律研究. 长江大学学报(自然科学版). 2023(03): 94-100+127 .
    13. 徐润滋,杨胜来,王吉涛,张彦斌,谢平,董卓鑫. 高温高压下陆相致密油藏非稳态压裂液渗吸机理研究. 油气地质与采收率. 2023(03): 94-103 .
    14. 樊康杰,王健,魏峰,唐慧敏,李宛珊,唐杨. 陆相砂岩油藏高含水阶段驱油效率再认识. 油气地质与采收率. 2023(03): 128-135 .
    15. 张娟,邓波,张浩弋,李彦军. 致密砂岩动静渗吸增油机理实验研究. 科学技术与工程. 2022(24): 10526-10533 .
    16. 林魂,宋西翔,罗超,孙新毅,杨兵,董利飞. 致密砂岩油藏裂缝与基质间渗吸特征及主控因素. 油气地质与采收率. 2022(05): 133-140 .
    17. 黎明,廖晶,王肃,贺子潇,王惠卫,王俊,何辉,朱玉双. 鄂尔多斯盆地超低渗透油藏渗吸特征及其影响因素——以渭北油田三叠系延长组三段储层为例. 石油实验地质. 2022(06): 971-980 . 本站查看
    18. 卫嘉鑫,张妍,尚教辉,吕娜,刘文超,王恒恺,马福建,张启涛. 页岩油开发初期产能控制因素分析——以长庆油田里151区为例. 油气藏评价与开发. 2021(04): 550-558 .
    19. 齐松超,于海洋,杨海烽,汪洋,杨正明. 致密砂岩逆向渗吸作用距离实验研究. 力学学报. 2021(09): 2603-2611 .
    20. 马明伟,祝健,李嘉成,廖凯,王俊超,王飞. 吉木萨尔凹陷芦草沟组页岩油储集层渗吸规律. 新疆石油地质. 2021(06): 702-708 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.1 %FULLTEXT: 20.1 %META: 74.6 %META: 74.6 %PDF: 5.3 %PDF: 5.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.2 %其他: 6.2 %其他: 0.7 %其他: 0.7 %Central District: 0.1 %Central District: 0.1 %India: 0.1 %India: 0.1 %San Lorenzo: 0.2 %San Lorenzo: 0.2 %Turkey: 0.1 %Turkey: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.3 %[]: 0.3 %三门峡: 0.1 %三门峡: 0.1 %上海: 1.0 %上海: 1.0 %东莞: 0.1 %东莞: 0.1 %东营: 0.4 %东营: 0.4 %临汾: 0.3 %临汾: 0.3 %亨德森: 0.3 %亨德森: 0.3 %保定: 0.2 %保定: 0.2 %北京: 6.4 %北京: 6.4 %十堰: 0.1 %十堰: 0.1 %南京: 0.2 %南京: 0.2 %南平: 0.1 %南平: 0.1 %卢塞纳: 0.3 %卢塞纳: 0.3 %印度德里: 0.3 %印度德里: 0.3 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %吐鲁番地区: 0.1 %吐鲁番地区: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大庆: 0.5 %大庆: 0.5 %天津: 0.8 %天津: 0.8 %奥斯汀: 0.5 %奥斯汀: 0.5 %宁波: 0.1 %宁波: 0.1 %宣城: 0.2 %宣城: 0.2 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.1 %广州: 0.1 %延安: 0.2 %延安: 0.2 %张家口: 2.4 %张家口: 2.4 %德阳: 0.1 %德阳: 0.1 %成都: 2.5 %成都: 2.5 %扬州: 0.5 %扬州: 0.5 %斯德哥尔摩: 0.1 %斯德哥尔摩: 0.1 %新乡: 0.3 %新乡: 0.3 %无锡: 0.4 %无锡: 0.4 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.2 %杭州: 0.2 %柏林: 0.3 %柏林: 0.3 %武汉: 1.2 %武汉: 1.2 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.2 %沈阳: 0.2 %法尔肯施泰因: 0.6 %法尔肯施泰因: 0.6 %济南: 0.3 %济南: 0.3 %淮南: 0.1 %淮南: 0.1 %温州: 0.3 %温州: 0.3 %湖州: 0.1 %湖州: 0.1 %湛江: 0.1 %湛江: 0.1 %漯河: 1.1 %漯河: 1.1 %盘锦: 0.5 %盘锦: 0.5 %石家庄: 0.2 %石家庄: 0.2 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %自贡: 0.1 %自贡: 0.1 %芒廷维尤: 40.9 %芒廷维尤: 40.9 %芝加哥: 0.5 %芝加哥: 0.5 %荆州: 0.1 %荆州: 0.1 %莫斯科: 0.5 %莫斯科: 0.5 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 13.9 %西宁: 13.9 %西安: 0.8 %西安: 0.8 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.1 %费利蒙: 0.1 %达州: 0.2 %达州: 0.2 %运城: 2.1 %运城: 2.1 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.2 %郑州: 0.2 %鄂州: 0.3 %鄂州: 0.3 %重庆: 1.0 %重庆: 1.0 %长沙: 1.5 %长沙: 1.5 %长治: 0.2 %长治: 0.2 %阿什本: 0.4 %阿什本: 0.4 %青岛: 3.6 %青岛: 3.6 %其他其他Central DistrictIndiaSan LorenzoTurkeyUnited States[]三门峡上海东莞东营临汾亨德森保定北京十堰南京南平卢塞纳印度德里台州合肥吐鲁番地区呼和浩特哈尔滨哥伦布唐山嘉兴大庆天津奥斯汀宁波宣城巴音郭楞常州平顶山广州延安张家口德阳成都扬州斯德哥尔摩新乡无锡昆明晋城朝阳杭州柏林武汉汕头沈阳法尔肯施泰因济南淮南温州湖州湛江漯河盘锦石家庄美国伊利诺斯芝加哥自贡芒廷维尤芝加哥荆州莫斯科衡阳衢州西宁西安贵阳费利蒙达州运城遵义邯郸郑州鄂州重庆长沙长治阿什本青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (829) PDF downloads(106) Cited by(28)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return