Volume 43 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
MA Yongsheng, LI Maowen, CAI Xunyu, XU Xuhui, HU Dongfeng, QU Shouli, LI Gensheng, HE Dengfa, XIAO Xianming, ZENG Yijin, RAO Ying, MA Xiaoxiao. Advances in basic research on the mechanism of deep marine hydrocarbon enrichment and key exploitation technologies[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 737-748. doi: 10.11781/sysydz202105737
Citation: MA Yongsheng, LI Maowen, CAI Xunyu, XU Xuhui, HU Dongfeng, QU Shouli, LI Gensheng, HE Dengfa, XIAO Xianming, ZENG Yijin, RAO Ying, MA Xiaoxiao. Advances in basic research on the mechanism of deep marine hydrocarbon enrichment and key exploitation technologies[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 737-748. doi: 10.11781/sysydz202105737

Advances in basic research on the mechanism of deep marine hydrocarbon enrichment and key exploitation technologies

doi: 10.11781/sysydz202105737
  • Received Date: 2021-07-12
  • Rev Recd Date: 2021-08-20
  • Publish Date: 2021-09-28
  • A basic research program on deep hydrocarbon resource accumulation mechanisms and key exploitation technologies was initiated by the National Natural Science Foundation of China at the beginning of 2020, to meet the theoretical and technological demands of deep hydrocarbon exploration and development in the Tarim, Sichuan and Ordos basins. This paper provided a review of the recent program progresses on (1) the reconstruction of prototypes and the transformation histories of three ancient cratons in China; (2) the petroleum accumulation and flow mechanisms in deep marine carbonate reservoirs and deep shale gas systems; (3) the geophysical theories and methods for imaging the deep structures and predicting the deep petroleum reservoirs; and (4) the new protocols and downhole tools for deep well drilling and completion. Brief comments were also made on the preliminary application of the recent program results in facilitating several breakthroughs in the deep petroleum exploration of the Tarim and Sichuan basins.

     

  • loading
  • [1]
    白国平, 曹斌风. 全球深层油气藏及其分布规律[J]. 石油与天然气地质, 2014, 35(1): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201401004.htm

    BAI Guoping, CAO Binfeng. Characteristics and distribution patterns of deep petroleum accumulations in the world[J]. Oil & Gas Geology, 2014, 35(1): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201401004.htm
    [2]
    马永生, 陈洪德, 王国力. 中国南方层序地层与古地理[M]. 北京: 科学出版社, 2009.

    MA Yongsheng, CHEN Hongde, WANG Guoli. Sequence strati-graphy and paleogeography in southern China[M]. Beijing: Science Press, 2009.
    [3]
    刘树根, 孙玮, 罗志立, 等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版), 2013, 40(5): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201305003.htm

    LIU Shugen, SUN Wei, LUO Zhili, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian Strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201305003.htm
    [4]
    汪泽成, 赵文智, 胡素云, 等. 克拉通盆地构造分异对大油气田形成的控制作用: 以四川盆地震旦系—三叠系为例[J]. 天然气工业, 2017, 37(1): 9-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201701003.htm

    WANG Zecheng, ZHAO Wenzhi, HU Suyun, et al. Control of tectonic differentiation on the formation of large oil and gas fields in craton basins: a case study of Sinian-Triassic of the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(1): 9-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201701003.htm
    [5]
    何登发, 马永生, 刘波, 等. 中国含油气盆地深层勘探的主要进展与科学问题[J]. 地学前缘, 2019, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901002.htm

    HE Dengfa, MA Yongsheng, LIU Bo, et al. Main advances and key issues for deep-seated exploration in petroliferous basins in China[J]. Earth Science Frontiers, 2019, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901002.htm
    [6]
    何治亮, 彭守涛, 张涛. 塔里木盆地塔河地区奥陶系储层形成的控制因素与复合—联合成因机制[J]. 石油与天然气地质, 2010, 31(6): 743-752. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006010.htm

    HE Zhiliang, PENG Shoutao, ZHANG Tao. Controlling factors and genetic pattern of the Ordovician reservoirs in the Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2010, 31(6): 743-752. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006010.htm
    [7]
    金之钧. 我国海相碳酸盐岩层系石油地质基本特征及含油气远景[J]. 前沿科学, 2010, 4(1): 11-23. https://www.cnki.com.cn/Article/CJFDTOTAL-QYKX201001004.htm

    JIN Zhijun. Petroliferous features of marine carbonate strata and hydrocarbon resource prospects in China[J]. Frontier Science, 2010, 4(1): 11-23. https://www.cnki.com.cn/Article/CJFDTOTAL-QYKX201001004.htm
    [8]
    马永生, 蔡勋育, 赵培荣, 等. 深层超深层碳酸盐岩优质储层发育机理和"三元控储"模式: 以四川普光气田为例[J]. 地质学报, 2010, 84(8): 1087-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008002.htm

    MA Yongsheng, CAI Xunyu, ZHAO Peirong, et al. Formation Mechanism of deep-buried carbonate reservoir and its model of three-element controlling reservoir: a case study from the Puguang Oilfeild in Sichuan[J]. Acta Geologica Sinica, 2010, 84(8): 1087-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008002.htm
    [9]
    焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm

    JIAO Fangzheng. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm
    [10]
    马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104014.htm

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104014.htm
    [11]
    何治亮, 金晓辉, 沃玉进, 等. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J]. 中国石油勘探, 2016, 21(1): 3-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201601003.htm

    HE Zhiliang, JIN Xiaohui, WO Yujin, et al. Hydrocarbon accumulation characteristics and exploration domains of ultra-deep marine carbonates in China[J]. China Petroleum Exploration, 2016, 21(1): 3-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201601003.htm
    [12]
    金之钧, 王清晨. 中国典型叠合盆地与油气成藏研究新进展: 以塔里木盆地为例[J]. 中国科学(D辑地球科学), 2004, 34(S1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2004S1000.htm

    JIN Zhijun, WANG Qingchen. Recent developments in study of the typical superimposed basins and petroleum accumulation in China: exemplified by the Tarim Basin[J]. Science in China(Series D Earth Science), 2004, 47(S2): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2004S1000.htm
    [13]
    曾义金. 深层页岩气开发工程技术进展[J]. 石油科学通报, 2019, 4(3): 233-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201903002.htm

    ZENG Yijin. Progress in engineering technologies for the deve-lopment of deep shale gas[J]. Petroleum Science Bulletin, 2019, 4(3): 233-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201903002.htm
    [14]
    李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1): 45-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001005.htm

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and deve-lopment directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001005.htm
    [15]
    马永生, 黎茂稳, 蔡勋育, 等. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题[J]. 石油与天然气地质, 2020, 41(4): 655-672. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004002.htm

    MA Yongsheng, LI Maowen, CAI Xunyu, et al. Mechanisms and exploitation of deep marine petroleum accumulations in China: advances, technological bottlenecks and basic scientific problems[J]. Oil & Gas Geology, 2020, 41(4): 655-672. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004002.htm
    [16]
    CHEN Jiajun, HE Dengfa. Propagation growth of en echelon detachment folds: case from the Nankalayuergun fold zone, north Tarim Basin, NW China[J]. Journal of Structural Geology, 2021, 143: 104253. https://www.sciencedirect.com/science/article/pii/S0191814120304739
    [17]
    LI Di, HE Dengfa, SUN Min, et al. The role of arc-arc collision in accretionary orogenesis: insights from~320 Ma tectono-sedimentary transition in the Karamaili area, NW China[J]. Tectonics, 2020, 39(1): e2019TC005623.
    [18]
    ZHANG Tan, LI Yifan, FAN Tailiang, et al. Marine carbon and sulfur cycling across the Ediacaran-Cambrian boundary in Tarim block and its implications for paleoenvironmental changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 110011.
    [19]
    WU Jun, FAN Tailiang, GOMEZ-RIVAS E, et al. Fractal characteristics of pore networks and sealing capacity of Ordovician carbonate cap rocks: a case study based on outcrop analogues from the Tarim Basin, China[J]. AAPG Bulletin, 2021, 105(2): 437-479.
    [20]
    LI Shuangjian, LI Yingqiang, HE Zhiliang, et al. Differential deformation on two sides of Qiyueshan Fault along the eastern margin of Sichuan Basin, China, and its influence on shale gas preservation[J]. Marine and Petroleum Geology, 2020, 121: 104602.
    [21]
    LI Yingqiang, LI Shuangjian, HE Dengfa, et al. Middle Triassic tectono-sedimentary development of Sichuan Basin: insights into the cratonic differentiation[J]. Geological Journal, 2021, 56(4): 1858-1878, doi: 10.1002/gj.4033.
    [22]
    高平, 李双建, 何治亮, 等. 四川盆地广元—梁平古裂陷构造—沉积演化[J]. 石油与天然气地质, 2020, 41(4): 784-799. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004013.htm

    GAO Ping, LI Shuangjian, HE Zhiliang, et al. Tectonic-sedimentary evolution of Guangyuan-Liangping paleo-rift in Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(4): 784-799. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004013.htm
    [23]
    何治亮, 李双建, 刘全有, 等. 盆地深部地质作用与深层资源: 科学问题与攻关方向[J]. 石油实验地质, 2020, 42(5): 767-779. doi: 10.11781/sysydz202005767

    HE Zhiliang, LI Shuangjian, LIU Quanyou, et al. Deep geological processes and deep resources in basins: scientific issues and research directions[J]. Petroleum Geology & Experiment, 2020, 42(5): 767-779. doi: 10.11781/sysydz202005767
    [24]
    邓尚, 刘雨晴, 刘军, 等. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例[J/OL]. 大地构造与成矿学, 2020, 45: 1-16(2020-11-19). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=DGYK20201117000.

    DENG Shang, LIU Yuqing, LIU Jun, et al. Structural styles and evolution models of intracratonic strike-slip faults and the implications for reservoir exploration and appraisal: a case study of the Shunbei area, Tarim Basin[J/OL]. Geotectonica et Metallogenia, 2020, 45: 1-16(2020-11-19). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=DGYK20201117000.
    [25]
    李英强, 何登发, 李双建. 湘鄂西—渝东褶皱带多重滑脱构造变形特征与构造模型[J]. 地质科学, 2020, 55(3): 894-908. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202003016.htm

    LI Yingqiang, HE Dengfa, LI Shuangjian. Deformation characte-ristics and structural model of multi-layer detachment structures in the western Hu'nan and Hubei to eastern Chongqing fold belt[J]. Chinese Journal of Geology, 2020, 55(3): 894-908. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202003016.htm
    [26]
    徐旭辉, 方成名, 陆建林, 等. 原型控源、迭加控藏: 油气盆地资源分级评价与有利勘探方向优选思维及技术[J]. 石油实验地质, 2020, 42(5): 824-836. doi: 10.11781/sysydz202005824

    XUN Xuhui, FANG Chengming, LU Jianlin, et al. Hydrocarbon sources controlled by basin prototype and petroleum accumulation controlled by basin superposition: thoughts and technology of resource grading evaluation and exploration optimization in petroliferous basins[J]. Petroleum Geology & Experiment, 2020, 42(5): 824-836. doi: 10.11781/sysydz202005824
    [27]
    马晓潇, 黎茂稳, 陈强路, 等. 中国古克拉通盆地黑色页岩中碳酸盐岩和有机碳稳定碳同位素变化及其指示意义[C]//第九届中国石油地质年会. 海口, 2021: 446.

    MA Xiaoxiao, LI Maowen, CHEN Qianglu, et al. Stable carbon isotopic variations of carbonate and organic carbon in black shale from paleo-craton basins in China and their implications[C]//9th Chinese Association of Petroleum Geologists Annual Meeting. Haikou, 2021: 446.
    [28]
    MA Xiaoxiao, LI Maowen, LIU Peng, et al. Combined source and maturity influence on molecular tracers and implications for oil-source correlation in deep reservoirs[C]//30th International Meeting on Organic Geochemistry. [S.l.]: European Association of Geoscientists & Engineers, 2021.
    [29]
    陈强路, 席斌斌, 韩俊, 等. 塔里木盆地顺托果勒地区超深层油藏保存及影响因素: 来自流体包裹体的证据[J]. 中国石油勘探, 2020, 25(3): 121-133. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003011.htm

    CHEN Qianglu, XI Binbin, HAN Jun, et al. Preservation and influence factors of ultra-deep oil reservoirs in Shuntuoguole area, Tarim Basin: evidence from fluid inclusions[J]. China Petroleum Exploration, 2020, 25(3): 121-133. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003011.htm
    [30]
    LIU Shugen, YANG Yu, DENG Bin, et al. Tectonic evolution of the Sichuan Basin, Southwest China[J]. Earth-Science Reviews, 2021, 213: 103470. https://www.sciencedirect.com/science/article/pii/S001282522030516X
    [31]
    WANG Jingbin, HE Zhiliang, ZHU Dongya, et al. Petrological and geochemical characteristics of the botryoidal dolomite of Dengying Formation in the Yangtze Craton, South China: constraints on terminal Ediacaran "dolomite seas"[J]. Sedimentary Geology, 2020, 406: 105722.
    [32]
    ZHU Dongya, LIU Quanyou, HE Zhiliang, et al. Early development and late preservation of porosity linked to presence of hydrocarbons in Precambrian microbialite gas reservoirs within the Sichuan Basin, southern China[J]. Precambrian Research, 2020, 342: 105694.
    [33]
    马安来, 金之钧, 晏继发, 等. 煤中金刚烷的分布与演化[J]. 石油学报, 2020, 41(7): 796-808. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202007004.htm

    MA Anlai, JIN Zhijun, YAN Jifa, et al. Distribution and evolution of diamondoids in coals[J]. Acta Petrolei Sinica, 2020, 41(7): 796-808. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202007004.htm
    [34]
    马安来, 金之钧, 李慧莉, 等. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学, 2020, 45(5): 1737-1753. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005017.htm

    MA Anlai, JIN Zhijun, LI Huili, et al. Secondary Alteration and preservation of ultra-deep Ordovician oil reservoirs of north Shuntuoguole area of Tarim Basin, NW China[J]. Earth Science, 2020, 45(5): 1737-1753. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005017.htm
    [35]
    邱楠生, 何丽娟, 常健, 等. 沉积盆地热历史重建研究进展与挑战[J]. 石油实验地质, 2020, 42(5): 790-802. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005017.htm

    QIU Nansheng, HE Lijuan, CHANG Jian, et al. Research progress and challenges of thermal history reconstruction in sedimentary basins[J]. Petroleum Geology & Experiment, 2020, 42(5): 790-802. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005017.htm
    [36]
    CHEN Junqing, ZHANG Xingang, CHEN Zhuoheng, et al. Hydrocarbon expulsion evaluation based on pyrolysis Rock-Eval data: implications for Ordovician carbonates exploration in the Tabei Uplift, Tarim[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107614. https://www.sciencedirect.com/science/article/pii/S0920410520306823
    [37]
    CHEN Junqing, PANG Xiongqi, WU Song, et al. Method for identify-ing effective carbonate source rocks: a case study from Middle-Upper Ordovician in Tarim Basin, China[J]. Petroleum Science, 2020, 17: 1491-1511.
    [38]
    LI Pingping, ZOU Huayao, HAO Fang, et al. Using clumped isotopes to determine the origin of the Middle Permian Qixia Formation dolostone, NW Sichuan Basin, China[J]. Marine and Petroleum Geology, 2020, 122: 104660. https://www.sciencedirect.com/science/article/pii/S0264817220304438
    [39]
    王敬, 赵卫, 刘慧卿, 等. 缝洞型碳酸盐岩油藏注水井间干扰特征及其影响因素[J]. 石油勘探与开发, 2020, 47(5): 990-999. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005016.htm

    WANG Jing, ZHAO Wei, LIU Huiqing, et al. Inter-well interferences and their influencing factors during water flooding in fractured-vuggy carbonate reservoirs[J]. Petroleum Exploration and Deve-lopment, 2020, 47(5): 990-999. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005016.htm
    [40]
    肖贤明, 周秦, 程鹏, 等. 高—过成熟海相页岩中矿物—有机质复合体(MOA)的显微激光拉曼光谱特征作为成熟度指标的意义[J]. 中国科学(地球科学), 2020, 50(9): 1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009006.htm

    XIAO Xianming, ZHOU Qin, CHENG Peng, et al. Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities[J]. Science China Earth Sciences, 2020, 63(10): 1540-1552. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009006.htm
    [41]
    SUN Jian, XIAO Xianming, WEI Qiang, et al. Gas in place and its controlling factors of the shallow Longmaxi shale in the Xishui area, Guizhou, China[J]. Journal of Natural Gas Science and Engineering, 2020, 77: 103272.
    [42]
    SUN Jian, XIAO Xianming, CHENG Peng, et al. The relationship between oil generation, expulsion and retention of lacustrine shales: based on pyrolysis simulation experiments[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107625. https://www.sciencedirect.com/science/article/pii/S0920410520306938
    [43]
    刘伟新, 卢龙飞, 魏志红, 等. 川东南地区不同埋深五峰组—龙马溪组页岩储层微观结构特征与对比[J]. 石油实验地质, 2020, 42(3): 378-386. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003010.htm

    LIU Weixin, LU Longfei, WEI Zhihong, et al. Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin[J]. Petroleum Geo-logy & Experiment, 2020, 42(3): 378-386. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003010.htm
    [44]
    卢龙飞, 刘伟新, 俞凌杰, 等. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质, 2020, 42(3): 363-370. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003008.htm

    LU Longfei, LIU Weixin, YU Lingjie, et al. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. Petroleum Geology & Experiment, 2020, 42(3): 363-370. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202003008.htm
    [45]
    SHEN Baojian, LI Zhiming, ZHENG Zili, et al. Status and relative content of water in shale determined by thermogravimetry-mass spectrometry analysis[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107739.
    [46]
    GAO Ping, LI Shuangjian, LASH G G, et al. Silicification and Si cycling in a silica-rich ocean during the Ediacaran-Cambrian transition[J]. Chemical Geology, 2020, 552: 119787.
    [47]
    GE Xun, HU Wangshui, MA Yongsheng, et al. Quantitative evaluation of geological conditions for shale gas preservation based on vertical and lateral constraints in the Songkan area, northern Guizhou, southern China[J]. Marine and Petroleum Geology, 2021, 124: 104787.
    [48]
    JIA Aoqi, HU Dongfeng, HE Sheng, et al. Variations of pore structure in organic-rich shales with different lithofacies from the Jiangdong block, Fuling shale gas field, SW China: insights into gas storage and pore evolution[J]. Energy & Fuels, 2020, 34(10): 12457-12475.
    [49]
    LI Caoxiong, XIAN Chenggang, WANG Jun, et al. The spontaneous imbibition of micro/nano structures in tight matrix and the influence on imbibition potential[J]. Micromachines, 2020, 11(9): 794.
    [50]
    YU Bo, ZHOU Hui, WANG Lingqian, et al. Prestack Bayesian statistical inversion constrained by reflection features[J]. Geophysics, 2020, 85(4): R349-R363.
    [51]
    CHEN Hanming, ZHOU Hui, RAO Ying. An implicit stabilization strategy for Q-compensated reverse time migration[J]. Geophysics, 2020, 85(3): S169-S183.
    [52]
    FANG Jinwei, ZHOU Hui, LI Yunyue, et al. Data-driven low-frequency signal recovery using deep-learning predictions in full-waveform inversion[J]. Geophysics, 2020, 85(6): A37-A43.
    [53]
    郑小鹏. 基于反泄露傅里叶变换和凸集映射的OVT域数据重建方法[J]. 内蒙古石油化工, 2020(4): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH202004009.htm

    ZHENG Xiaopeng. OVT domain data reconstruction method based on Anti Leakage Fourier transform and convex set mapping[J]. Inner Mongolia Petrochemical Industry, 2020(4): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH202004009.htm
    [54]
    HE Yanxiao, WANG Shangxu, WU Xinyu, et al. Influence of frequency-dependent anisotropy on seismic amplitude-versus-offset signatures for fractured poroelastic rocks[J]. Geophysical Prospecting, 2020, 68(7): 2141-2163.
    [55]
    HE Yanxiao, WANG Shangxu. Analysis of reservoir heterogeneity-induced amplification effect on time-lapse seismic responses of fluid substitution: a physical modelling study[J]. Geophysical Prospecting, 2020, 68(6): 1906-1926.
    [56]
    HE Yanxiao, WANG Shangxu, WU Xinyu. Effects of patch size changes on the time-lapse seismic reflections of highly attenuating reservoirs[J]. Journal of Applied Geophysics, 2020, 172: 103878.
    [57]
    WANG Yanghua, LIU Xiwu, GAO Fengxia, et al. Robust vector median filtering with a structure-adaptive implementation[J]. Geophysics, 2020, 85(5): V407-V414.
    [58]
    WANG Ruo, WANG Yanghua, RAO Ying. Seismic reflectivity inversion using an L1-norm basis-pursuit method and GPU parallelisation[J]. Journal of Geophysics and Engineering, 2020, 17(4): 776-782. https://academic.oup.com/jge/article/17/4/776/5863469
    [59]
    LI Shengjie, RAO Ying. Poroelastic property analysis of seismic low-frequency shadows associated with gas reservoirs[J]. Journal of Geophysics and Engineering, 2020, 17(3): 463-474.
    [60]
    HE Faqi, RAO Ying, WANG Weihong, et al. Prediction of hydrocarbon reservoirs within coal-bearing formations[J]. Journal of Geophysics and Engineering, 2020, 17(3): 484-492.
    [61]
    ZHU Tong, WANG Yu, SUN Zhentao. PML absorbing boundary condition for structure-preserving seismic wave modeling[J]. IOP Conference Series: Earth and Environmental Science, 2020, 558: 032012.
    [62]
    谢玮, 毕臣臣, 胡华锋, 等. 基于绕射波的碳酸盐岩储层缝洞识别方法及应用[J]. 科学技术与工程, 2021, 21(2): 453-457. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202102005.htm

    XIE Wei, BI Chenchen, HU Huafeng, et al. Development and application of an identification method for fracture and cave in carbonate reservoir based on diffracted wave[J]. Science Technology and Engineering, 2021, 21(2): 453-457. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202102005.htm
    [63]
    ZHANG Feng, LI Xiangyang. Inversion of the reflected SV-wave for density and S-wave velocity structures[J]. Geophysical Journal International, 2020, 221(3): 1635-1639.
    [64]
    DING Pinbo, WANG Ding, LI Xiangyang. An experimental study on scale-dependent velocity and anisotropy in fractured media based on artificial rocks with controlled fracture geometries[J]. Rock Mechanics and Rock Engineering, 2020, 53: 3149-3159. doi: 10.1007/s00603-020-02095-2
    [65]
    王志战, 朱祖扬, 李丰波, 等. 便携式岩屑声波录井系统研制与测试[J]. 石油钻探技术, 2020, 48(6): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202006019.htm

    WANG Zhizhan, ZHU Zuyang, LI Fengbo, et al. development and testing of a portable acoustic logging system on cuttings[J]. Petroleum Drilling Techniques, 2020, 48(6): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202006019.htm
    [66]
    ZENG Yijin, CHEN Junhai, LI Dandan, et al. Study on rock burst behavior and tendency identification of surrounding rocks in hard and brittle formations of deep and ultra-deep wells[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570: 032056.
    [67]
    SONG Hengyu, SHI Huaizhong, LI Gensheng, et al. Numerical simulation of the energy transfer efficiency and rock damage in axial-torsional coupled percussive drilling[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107675.
    [68]
    吴雄军, 林永学, 宋碧涛, 等. 顺北油气田奥陶系破碎性地层油基钻井液技术[J]. 钻井液与完井液, 2020, 37(6): 701-708. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW202006004.htm

    WU Xiongjun, LIN Yongxue, SONG Bitao, et al. Oil base drilling fluid technology for drilling broken Ordovician formation in Shunbei block[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 701-708. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW202006004.htm
    [69]
    张杜杰, 金军斌, 康毅力. 工作液顺序接触诱发超致密砂岩气藏液相圈闭损害评价[J]. 油气地质与采收率, 2020, 27(6): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202006015.htm

    ZHANG Dujie, JIN Junbin, KANG Yili. Evaluation of comprehensive liquid trapping damage of ultra-tight sandstone gas reservoir induced by sequential contact of working fluids[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202006015.htm
    [70]
    LIU Kui, DING Shidong, ZHOU Shiming, et al. Analysis and test on stress-strain of cement sheath in shale gas wells with hydraulic fracturing[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570: 032032.
    [71]
    ZENG Yijin, LIU Kui, DING Shidong, et al. Effect of the hydraulic fracturing-induced slippage of regional natural fracture on casing deformation in horizontal shale gas wells: a case study on the Weiyuan block[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570: 022011.
    [72]
    王燚钊, 侯冰, 张鲲鹏, 等. 碳酸盐岩储层酸压室内真三轴物理模拟实验[J]. 石油科学通报, 2020, 5(3): 412-419. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202003010.htm

    WANG Yizhao, HOU Bing, ZHANG Kunpeng, et al. Laboratory true triaxial acid fracturing experiments for carbonate reservoirs[J]. Petroleum Science Bulletin, 2020, 5(3): 412-419. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202003010.htm
    [73]
    ZHANG Qixing, LIN Botao, KAO Jiawei, et al. Characterization of stress field around a reverse fault based on a constraint stress model[C]//54th U.S. Rock Mechanics/Geomechanics Symposium. [S.l.]: American Rock Mechanics Association, 2020: 1734.
    [74]
    SHENG Mao, MA B, LI P, et al. Effects of brittleness and bedding plane on shear strength and fracture morphology of shales[C]//54th U.S. Rock Mechanics/Geomechanics Symposium. [S.l.]: American Rock Mechanics Association, 2020: 1539.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1372) PDF downloads(219) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return