Volume 43 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
YU Xiaolu, YE Kai, DU Chongjiao, GONG Hanning, MA Zhongliang. Microscopic recognition of micro fossils in carbonate rocks based on convolutional neural network[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 880-885. doi: 10.11781/sysydz202105880
Citation: YU Xiaolu, YE Kai, DU Chongjiao, GONG Hanning, MA Zhongliang. Microscopic recognition of micro fossils in carbonate rocks based on convolutional neural network[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 880-885. doi: 10.11781/sysydz202105880

Microscopic recognition of micro fossils in carbonate rocks based on convolutional neural network

doi: 10.11781/sysydz202105880
  • Received Date: 2021-06-06
  • Rev Recd Date: 2021-08-31
  • Publish Date: 2021-09-28
  • The identification of microfossils in carbonate rocks with thin-section observation is of great significance for the study of sedimentary environment, but the traditional method by manual identification is highly experience required and is greatly affected by subjective factors.In this paper, a method for microscopic recognition of carbonate rocks based on ResNet convolutional neural network was introduced. Through image preprocessing, model design, model training etc., the intelligent recognition of fossils of organisms within thin section images were realized, and the recognition accuracy showed to be 86%.Meanwhile, an advanced YOLO(You Look Only Once) object detection model was proposed, which could realize the detection and recognition of the area where the organism locates in thin section image, and the recognition accuracy appeared to be 85%.This method verified the feasibility of using digital image processing algorithm and deep learning method to intelligently identify biological microscopic images of carbonate rocks.It can be regarded as a useful supplement to traditional manual identification methods and has certain practical application value.

     

  • loading
  • [1]
    余素玉. 化石碳酸盐岩微相[M]. 北京: 地质出版社, 1988.

    YU Suyu. Microfacies of fossil carbonate[M]. Beijing: Geological Publishing House, 1988.
    [2]
    刘宝郡. 沉积岩石学[M]. 北京: 地质出版社, 1980.

    LIU Baojun. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1980.
    [3]
    WILSON J L. Carbonate facies in geologic history[M]. Berlin: Springer-Verlag, 1975.
    [4]
    赵敬松, 唐洪明, 雷卞军. 矿物岩石薄片研究基础[M]. 北京: 石油工业出版社, 2003.

    ZHAO Jingsong, TANG Hongming, LEI Bianjun. Research basis of mineralogical thin section[M]. Beijing: Petroleum Industry Press, 2003.
    [5]
    THOMPSON S, FUETEN F, BOCKUS D. Mineral identification using artificial neural networks and the rotating polarizer stage[J]. Computers and Geosciences, 2001, 27(9): 1081-1089. doi: 10.1016/S0098-3004(00)00153-9
    [6]
    ROSS B J, FUETEN F, YASHKIR D Y. Automatic mineral identification using genetic programming[J]. Machine Vision and Applications, 2001, 13(2): 61-69. doi: 10.1007/PL00013273
    [7]
    叶润青, 牛瑞卿, 张良培, 等. 基于图像分类的矿物含量测定及精度评价[J]. 中国矿业大学学报, 2011, 40(5): 810-815. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201105024.htm

    YE Runqing, NIU Ruiqing, ZHANG Liangpei, et al. Mineral contents determination and accuracy evaluation based on classification of petrographic images[J]. Journal of China University of Mining & Technology, 2011, 40(5): 810-8152. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201105024.htm
    [8]
    ALIGHOLI S, KHAJAVI R, RAZMARA M. Automated mineral identification algorithm using optical properties of crystals[J]. Computers and Geosciences, 2015, 85: 175-183. doi: 10.1016/j.cageo.2015.09.014
    [9]
    MAITRE J, BOUCHARD K, BÉDARD L P. Mineral grains recognition using computer vision and machine learning[J]. Computers & Geosciences, 2019, 130: 84-93.
    [10]
    李培军. 用ASETR图像和地统计学纹理进行岩性分类. 矿物岩石, 2004, 24(3): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200403014.htm

    LI Peijun. Lithological discrimination using ASTER image and geostatistical texture[J]. Journal of Mineralogy and Petrology, 2004, 24(3): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200403014.htm
    [11]
    郭超, 刘烨. 多色彩空间下的岩石图像识别研究[J]. 科学技术与工程, 2014, 14(18): 247-251. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201418050.htm

    GUO Chao, LIU Ye. Recognition of rock images based on Multiple Color Spaces[J]. Science Technology and Engineering, 2014, 14(18): 247-251, 255. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201418050.htm
    [12]
    杨艳梅, 柳娜, 程国建, 等. 基于Spark平台的岩石图像聚类分析[J]. 西安石油大学学报: 自然科学版, 2016, 31(6): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201606018.htm

    YANG Yanmei, LIU Na, CHENG Guojian, et al. Clustering analysis of rock images based on Spark platform[J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2016, 31(6): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201606018.htm
    [13]
    MARMO R, AMODIO S, TAGLIAFERRI R, et al. Textural identification of carbonate rocks by image processing and neural network: methodology proposal and examples[J]. Computers and Geosciences, 2005, 31(5): 649-659. doi: 10.1016/j.cageo.2004.11.016
    [14]
    程国建, 杨静, 黄全舟, 等. 基于概率神经网络的岩石薄片图像分类识别研究[J]. 科学技术与工程, 2013, 13(31): 9231-9235. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201331015.htm

    CHENG Guojian, YANG Jing, HUANG Quanzhou, et al. Rock image classification recognition based on probabilistic neural networks[J]. Science Technology and Engineering, 2013, 13(31): 9231-9235. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201331015.htm
    [15]
    刘曦阳. 图像识别技术在古生物化石图像上的应用[D]. 吉林大学, 2018.

    LIU Xiyang. The application of image recognition technology in paleontological fossil images[D]. Jilin university, 2018.
    [16]
    岳翔, 呼和, 贾建忠. 一种基于深度学习的有孔虫化石识别方法[J]. 电脑知识与技术, 2019, 15(27): 173+178. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201927076.htm

    YUE Xiang, HU He, JIA Jianzhong. A method for the identification of foraminifera fossils based on deep learning[J]. Computer Knowledge and Technology, 2019, 15(27): 173+178. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201927076.htm
    [17]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). 2016: 770-778.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (921) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return