Volume 43 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
HU Anping, SHEN Anjiang, CHEN Yana, ZHANG Jianyong, LIANG Feng, WANG Yongsheng. Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer(Δ47)[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 896-905. doi: 10.11781/sysydz202105896
Citation: HU Anping, SHEN Anjiang, CHEN Yana, ZHANG Jianyong, LIANG Feng, WANG Yongsheng. Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer(Δ47)[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 896-905. doi: 10.11781/sysydz202105896

Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer(Δ47)

doi: 10.11781/sysydz202105896
  • Received Date: 2021-08-03
  • Rev Recd Date: 2021-09-04
  • Publish Date: 2021-09-28
  • Reliable evolution curve of tectonic-burial history is essential for the research of the source rock evolution, reservoir formation and hydrocarbon accumulation of target strata of basin. Previous publications reported the tectonic-burial evolution history curves established depending on regional geological setting, formation (denuded) thickness, and tectonic movements, which were uncertain due to the difference in such geological understandings. For the ancient marine carbonates in China, which have experienced multiple tectonic movement reformation, it is more difficult to reconstruct tectonic-burial evolution history. In this paper, based on the identification of carbonate cements and the establishment of diagenetic sequence, through coupling carbonate laser ablation U-Pb dating and clumped isotope (Δ47) thermometer, two understandings were proposed: (1) The tectonic-burial curves of the Sinian Dengying Formation in the Sichuan Basin were established under the constraints of absolute age and temperature, which avoided the problems of uncertainty of tectonic-burial history curves in previous studies; (2) The new tectonic-burial history curve provided critical reference for study on the source rock evolution, reservoir origin and hydrocarbon accumulation of the Sinian Dengying Formation of the Sichuan Basin, revealing three stages of hydrocarbon accumulation in the Dengying gas reservoir including Silurian, Permian and Yanshanian-Himalayan periods. The proposed method of reconstructing tectonic-burial evolution curve is not only suitable for the ancient marine carbonates which experienced multiple tectonic movement reformation, but is also promising for the study of source rock evolution, reservoir origin and hydrocarbon accumulation.

     

  • loading
  • [1]
    何丽娟. 沉积盆地构造热演化模拟的研究进展[J]. 地球科学进展, 2000, 15(6): 661-665. doi: 10.3321/j.issn:1001-8166.2000.06.007

    HE Lijuan. Advance in tectono-thermal modelling of sedimentary basins[J]. Advances in Earth Science, 2000, 15(6): 661-665. doi: 10.3321/j.issn:1001-8166.2000.06.007
    [2]
    邱楠生. 沉积盆地热历史恢复方法及其在油气勘探中的应用[J]. 海相油气地质, 2005, 10(2): 45-51. doi: 10.3969/j.issn.1672-9854.2005.02.007

    QIU Nansheng. Methods of thermal history reconstruction of sedimentary basins and their application in oil and gas exploration[J]. Marine Origin Petroleum Geology, 2005, 10(2): 45-51. doi: 10.3969/j.issn.1672-9854.2005.02.007
    [3]
    朱传庆, 徐明, 单竞男, 等. 利用古温标恢复四川盆地主要构造运动时期的剥蚀量[J]. 中国地质, 2009, 36(6): 1268-1277. doi: 10.3969/j.issn.1000-3657.2009.06.008

    ZHU Chuanqing, XU Ming, SHAN Jingnan, et al. Quantifying the denudations of major tectonic events in Sichuan Basin: constrained by the paleothermal records[J]. Geology in China, 2009, 36(6): 1268-1277. doi: 10.3969/j.issn.1000-3657.2009.06.008
    [4]
    朱传庆, 邱楠生, 曹环宇, 等. 四川盆地东部构造-热演化: 来自镜质体反射率和磷灰石裂变径迹的约束[J]. 地学前缘, 2017, 24(3): 94-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703011.htm

    ZHU Chuanqing, QIU Nansheng, CAO Huanyu, et al. Tectono-thermal evolution of the eastern Sichuan Basin: constraints from the vitrinite reflectance and apatite fission track data[J]. Earth Science Frontiers, 2017, 24(3): 94-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703011.htm
    [5]
    XU Qiuchen, QIU Nansheng, LIU Wen, et al. Thermal evolution and maturation of Sinian and Cambrian source rocks in the central Sichuan Basin, Southwest China[J]. Journal of Asian Earth Sciences, 2018, 164: 143-158. doi: 10.1016/j.jseaes.2018.06.015
    [6]
    邱楠生, 刘雯, 徐秋晨, 等. 深层-古老海相层系温压场与油气成藏[J]. 地球科学, 2018, 43(10): 3511-3525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810015.htm

    QIU Nansheng, LIU Wen, XU Qiuchen, et al. Temperature-pressure field and hydrocarbon accumulation in deep-ancient marine strata[J]. Earth Science, 2018, 43(10): 3511-3525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810015.htm
    [7]
    沈安江, 胡安平, 程婷, 等. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩-孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1062-1074.

    SHEN Anjiang, HU Anping, CHENG Ting, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1062-1074.
    [8]
    胡安平, 沈安江, 梁峰, 等. 激光铀铅同位素定年技术在塔里木盆地肖尔布拉克组储层孔隙演化研究中的应用[J]. 石油与天然气地质, 2020, 41(1): 37-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001005.htm

    HU Anping, SHEN Anjiang, LIANG Feng, et al. Application of laser in-situ U-Pb dating to reconstruct the reservoir porosity evolution in the Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 37-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001005.htm
    [9]
    GHOSH P, ADKINS J, AFFEK H, et al. 13C-18O bonds in carbonate minerals: a new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70(6): 1439-1456. doi: 10.1016/j.gca.2005.11.014
    [10]
    SHENTON B J, GROSSMAN E L, PASSEY B H, et al. Clumped isotope thermometry in deeply buried sedimentary carbonates: the effects of bond reordering and recrystallization[J]. GSA Bulletin, 2015, 127(7/8): 1036-1051.
    [11]
    魏国齐, 王志宏, 李剑, 等. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J]. 天然气地球科学, 2017, 28(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701001.htm

    WEI Guoqi, WANG Zhihong, LI Jian, et al. Characteristics of source rocks, resource potential and exploration direction of Sinian and Cambrian in Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701001.htm
    [12]
    罗冰, 罗文军, 王文之, 等. 四川盆地乐山-龙女寺古隆起震旦系气藏形成机制[J]. 天然气地球科学, 2015, 26(3): 444-455. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503007.htm

    LUO Bing, LUO Wenjun, WANG Wenzhi, et al. Formation mechanism of the Sinian natural gas reservoir in the Leshan-Longnvsi Paleo-Uplift, Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(3): 444-455. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503007.htm
    [13]
    杨跃明, 文龙, 罗冰, 等. 四川盆地乐山-龙女寺古隆起震旦系天然气成藏特征[J]. 石油勘探与开发, 2016, 43(2): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602004.htm

    YANG Yueming, WEN Long, LUO Bing, et al. Hydrocarbon accumulation of Sinian natural gas reservoirs, Leshan-Longnüsi paleohigh, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602004.htm
    [14]
    刘树根, 马永生, 蔡勋育, 等. 四川盆地震旦系-下古生界天然气成藏过程和特征[J]. 成都理工大学学报(自然科学版), 2009, 33(4): 345-354. doi: 10.3969/j.issn.1671-9727.2009.04.001

    LIU Shugen, MA Yongsheng, CAI Xunyu, et al. Characteristic and accumulation process of the natural gas from Sinian to Lower Paleozoic in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2009, 33(4): 345-354. doi: 10.3969/j.issn.1671-9727.2009.04.001
    [15]
    王国芝, 刘树根, 刘伟, 等. 川中高石梯构造灯影组油气成藏过程[J]. 成都理工大学学报(自然科学版), 2014, 41(6): 684-693. doi: 10.3969/j.issn.1671-9727.2014.06.03

    WANG Guozhi, LIU Shugen, LIU Wei, et al. Process of hydrocarbon accumulation of Sinian Dengying Formation in Gaoshiti Structure, Central Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6): 684-693. doi: 10.3969/j.issn.1671-9727.2014.06.03
    [16]
    汪泽成, 王铜山, 文龙, 等. 四川盆地安岳特大型气田基本地质特征与形成条件[J]. 中国海上油气, 2016, 28(2): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602005.htm

    WANG Zecheng, WANG Tongshan, WEN Long, et al. Basic geolo-gical characteristics and accumulation conditions of Anyue giant gas field, Sichuan Basin[J]. China Offshore Oil and Gas, 2016, 28(2): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602005.htm
    [17]
    孙玮, 刘树根, 韩克猷, 等. 四川盆地震旦系油气地质条件及勘探前景分析[J]. 石油实验地质, 2009, 31(4): 350-355. doi: 10.3969/j.issn.1001-6112.2009.04.007

    SUN Wei, LIU Shungen, HAN Keyou, et al. The petroleum geolo-gical condition and exploration prospect analysis in Sinian, Sichuan Basin[J]. Petroleum Geology & Experiment, 2009, 31(4): 350-355. doi: 10.3969/j.issn.1001-6112.2009.04.007
    [18]
    孙玮, 刘树根, 宋金民, 等. 叠合盆地古老深层碳酸盐岩油气成藏过程和特征: 以四川叠合盆地震旦系灯影组为例[J]. 成都理工大学学报(自然科学版), 2017, 44(3): 257-285. doi: 10.3969/j.issn.1671-9727.2017.03.01

    SUN Wei, LIU Shugen, SONG Jinmin, et al. The formation process and characteristics of ancient and deep carbonate petroleum reservoirs in superimposed basins: a case study of Sinian (Ediacaran) Dengying Formation in the Sichuan superimposed basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(3): 257-285. doi: 10.3969/j.issn.1671-9727.2017.03.01
    [19]
    李英强, 何登发, 文竹. 四川盆地及邻区晚震旦世古地理与构造-沉积环境演化[J]. 古地理学报, 2013, 15(2): 231-245. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201302009.htm

    LI Yingqiang, HE Dengfa, WEN Zhu. Palaeogeography and tectonic-depositional environment evolution of the Late Sinian in Sichuan Basin and adjacent areas[J]. Journal of Palaeogeography, 2013, 15(2): 231-245. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201302009.htm
    [20]
    邓胜徽, 樊茹, 李鑫, 等. 四川盆地及周缘地区震旦(埃迪卡拉)系划分与对比[J]. 地层学杂志, 2015, 39(3): 239-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201503001.htm

    DENG Shenghui, FAN Ru, Li Xin, et al. Subdivision and correlation of the Sinian (Ediacaran) system in the Sichuan Basin and its adjacent area[J]. Journal of Stratigraphy, 2015, 39(3): 239-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201503001.htm
    [21]
    陈娅娜, 沈安江, 潘立银, 等. 微生物白云岩储集层特征成因和分布: 以四川盆地震旦系灯影组四段为例[J]. 石油勘探与开发, 2017, 44(5): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705006.htm

    CHEN Yana, SHEN Anjiang, PAN Liyin, et al. Features, origin and distribution of microbial dolomite reservoirs: a case study of 4th member of Sinian Dengying Formation in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(5): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705006.htm
    [22]
    沈安江, 陈娅娜, 张建勇, 等. 中国古老小克拉通台内裂陷特征及石油地质意义[J]. 石油与天然气地质, 2020, 41(1): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001003.htm

    SHEN Anjiang, CHEN Yana, ZHANG Jianyong, et al. Characteristics of intra-platform rift in ancient small-scalecratonic platform of China and its implications for hydrocarbon exploration[J]. Oil & Gas Geology, 2020, 41(1): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001003.htm
    [23]
    刘树根, 王一刚, 孙玮, 等. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报(自然科学版), 2016, 43(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201601001.htm

    LIU Shugen, WANG Yigang, SUN Wei, et al. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2016, 43(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201601001.htm
    [24]
    李伟, 易海永, 胡望水, 等. 四川盆地加里东古隆起构造演化与油气聚集的关系[J]. 天然气工业, 2014, 34(3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403004.htm

    LI Wei, YI Haiyong, HU Wangshui, et al. Tectonic evolution of Caledonian paleohigh in the Sichuan Basin and its relationship with hydrocarbon accumulation[J]. Natural Gas Industry, 2014, 34(3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403004.htm
    [25]
    魏国齐, 杨威, 杜金虎, 等. 四川盆地震旦纪-早寒武世克拉通内裂陷地质特征[J]. 天然气工业, 2015, 35(1): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501004.htm

    WEI Guoqi, YANG Wei, Du Jinhu, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501004.htm
    [26]
    RASBURY E T, COLE J M. Directly dating geologic events: U-Pb dating of carbonates[J]. Reviews of Geophysics, 2009, 47(3): RG3001.
    [27]
    SMITH P E, FARQUHAR R M, HANCOCK R G. Direct radiometric age determination of carbonate diagenesis using U-Pb in secondary calcite[J]. Earth and Planetary Science Letters, 1991, 105(4): 474-491.
    [28]
    SCHOENE B. 4.10-U-Th-Pb geochronology[M]//HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier Ltd., 2014: 341-378.
    [29]
    MOORBATH S, TAYLOR P N, ORPEN J L, et al. First direct radiometric dating of Archaean stromatolitic limestone[J]. Nature, 1987, 326(6116): 865-867.
    [30]
    SMITH P E, FARQUHAR R M. Direct dating of Phanerozoic sediments by the 238U-206Pb method[J]. Nature, 1989, 341(6242): 518-521.
    [31]
    DEWOLF C P, HALLIDAY A N. U-Pb dating of a remagnetized Paleozoic limestone[J]. Geophysical Research Letters, 1991, 18(8): 1445-1448.
    [32]
    GODEAU N, DESCHAMPS P, GUIHOU A, et al. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: case of the Urgonian limestone, France[J]. Geology, 2018, 46(3): 247-250.
    [33]
    VAKS A, WOODHEAD J, BAR-MATTHEWS M, et al. Pliocene-Pleistocene climate of the northern margin of Saharan-Arabian Desert recorded in speleothems from the Negev Desert, Israel[J]. Earth and Planetary Science Letters, 2013, 368: 88-100.
    [34]
    ISRAELSON C, HALLIDAY A N, BUCHARDT B. U-Pb dating of calcite concretions from Cambrian black shales and the Phanerozoic time scale[J]. Earth and Planetary Science Letters, 1996, 141(1/4): 153-159.
    [35]
    COOGAN L A, PARRISH R R, ROBERTS N M W. Early hydrothermal carbon uptake by the upper oceanic crust: insight from in situ U-Pb dating[J]. Geology, 2016, 44(2): 147-150.
    [36]
    ROBERTS N M W, WALKER R J. U-Pb geochronology of calcite-mineralized faults: absolute timing of rift-related fault events on the northeast Atlantic margin[J]. Geology, 2016, 44(7): 531-534.
    [37]
    PISAPIA C, DESCHAMPS P, BATTANI A, et al. U/Pb dating of geodic calcite: new insights on Western Europe major tectonic events and associated diagenetic fluids[J]. Journal of the Geological Society, 2018, 175(1): 60-70.
    [38]
    DENNISTON R F, ASMEROM Y, POLYAK V Y, et al. Caribbean chronostratigraphy refined with U-Pb dating of a Miocene coral[J]. Geology, 2008, 36(2): 151-154.
    [39]
    BECKER M L, RASBURY E T, MEYERS W J, et al. U-Pb calcite age of the Late Permian Castile Formation, Delaware Basin: a constraint on the age of the Permian-Triassic boundary (?)[J]. Earth and Planetary Science Letters, 2002, 203(2): 681-689.
    [40]
    LI Q, PARRISH R R, HORSTWOOD M S A, et al. U-Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology, 2014, 376: 76-83.
    [41]
    MURRAY S T, ARIENZO M M, SWART P K. Determining the Δ47 acid fractionation in dolomites[J]. Geochimica et Cosmochimica Acta, 2016, 174: 42-53.
    [42]
    HUNTINGTON K W, EILER J M, AFFEK H P, et al. Methods and limitations of 'clumped' CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry[J]. Journal of Mass Spectrometry, 2009, 44(9): 1318-1329.
    [43]
    DENNIS K J, AFFEK H P, PASSEY B H, et al. Defining an absolute reference frame for 'clumped' isotope studies of CO2[J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 7117-7131.
    [44]
    SWART P K, MURRAY S T, STAUDIGEL P T, et al. Oxygen isotopic exchange between CO2 and phosphoric acid: implications for the measurement of clumped isotopes in carbonates[J]. Geoche-mistry, Geophysics, Geosystems, 2019, 20(7): 3730-3750.
    [45]
    TERA F, WASSERBURG G J. U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions[J]. Earth and Planetary Science Letters, 1972, 17(1): 36-51.
    [46]
    刘绍文, 李香兰, 郝春艳, 等. 塔里木盆地的热流、深部温度和热结构[J]. 地学前缘, 2017, 24(3): 41-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703005.htm

    LIU Shaowen, LI Xianglan, HAO Chunyan, et al. Heat flow, deep formation temperature and thermal structure of the Tarim Basin, Northwest China[J]. Earth Science Frontiers, 2017, 24(3): 41-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703005.htm
    [47]
    魏国齐, 杨威, 谢武仁, 等. 四川盆地震旦系-寒武系天然气成藏模式与勘探领域[J]. 石油学报, 2018, 39(12): 1317-1327. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201812001.htm

    WEI Guoqi, YANG Wei, XIE Wuren, et al. Accumulation modes and exploration domains of Sinian-Cambrian natural gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2018, 39(12): 1317-1327. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201812001.htm
    [48]
    沈安江, 赵文智, 胡安平, 等. 碳酸盐矿物定年和定温技术及其在川中古隆起油气成藏研究中的应用[J]. 石油勘探与开发, 2021, 48(3): 476-487. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103005.htm

    SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. The dating and temperature measurement technologies for carbonate minerals and their application in hydrocarbon accumulation research in the paleo-uplift in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(3): 476-487. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103005.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (802) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return