Citation: | SONG Gang, LI Haiying, YE Ning, HAN Jun, XIAO Chongyang, LU Ziye, LI Yingtao. Types and features of diagenetic fluids in Shunbei No. 4 strike-slip fault zone in Shuntuoguole Low Uplift, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 603-612. doi: 10.11781/sysydz202204603 |
[1] |
漆立新, 云露. 塔里木台盆区碳酸盐岩成藏模式与勘探实践[J]. 石油实验地质, 2020, 42(5): 867-876. doi: 10.11781/sysydz202005867
QI Lixin, YUN Lu. Carbonate reservoir forming model and exploration in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 867-876. doi: 10.11781/sysydz202005867
|
[2] |
云露. 顺北地区奥陶系超深断溶体油气成藏条件[J]. 新疆石油地质, 2021, 42(2): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102002.htm
YUN Lu. Hydrocarbon accumulation of ultra-deep Ordovician fault-karst reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102002.htm
|
[3] |
邓尚, 刘雨晴, 刘军, 等. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例[J]. 大地构造与成矿学, 2021, 45(6): 1111-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106003.htm
DENG Shang, LIU Yuqing, LIU Jun, et al. Structural styles and evolution models of intracratonic strike-slip faults and the implications for reservoir exploration and appraisal: a case study of the Shunbei area, Tarim Basin[J]. Geotectonica et Metallogenia, 2021, 45(6): 1111-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106003.htm
|
[4] |
王斌, 赵永强, 何生, 等. 塔里木盆地顺北5号断裂带北段奥陶系油气成藏期次及其控制因素[J]. 石油与天然气地质, 2020, 41(5): 965-974. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005008.htm
WANG Bin, ZHAO Yongqiang, HE Sheng, et al. Hydrocarbon accumulation stages and their controlling factors in the northern Ordovician Shunbei 5 fault zone, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 965-974. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005008.htm
|
[5] |
曹自成, 路清华, 顾忆, 等. 塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征[J]. 石油与天然气地质, 2020, 41(5): 975-984. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005009.htm
CAO Zicheng, LU Qinghua, GU Yi, et al. Characteristics of Ordovician reservoirs in Shunbei 1 and 5 fault zones, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 975-984. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005009.htm
|
[6] |
林波, 张旭, 况安鹏, 等. 塔里木盆地走滑断裂构造变形特征及油气意义: 以顺北地区1号和5号断裂为例[J]. 石油学报, 2021, 42(7): 906-923. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107007.htm
LIN Bo, ZHANG Xu, KUANG Anpeng, et al. Structural deformation characteristics of strike-slip faults in Tarim Basin and their hydrocarbon significance: a case study of No. 1 fault and No. 5 fault in Shunbei area[J]. Acta Petrolei Sinica, 2021, 42(7): 906-923. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107007.htm
|
[7] |
韩俊, 况安鹏, 能源, 等. 顺北5号走滑断裂带纵向分层结构及其油气地质意义[J]. 新疆石油地质, 2021, 42(2): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102004.htm
HAN Jun, KUANG Anpeng, NENG Yuan, et al. Vertical layered structure of Shunbei No. 5 strike-slip fault zone and its significance on hydrocarbon accumulation[J]. Xinjiang Petroleum Geology, 2021, 42(2): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102004.htm
|
[8] |
黄诚, 云露, 曹自成, 等. 塔里木盆地顺北地区中—下奥陶统"断控"缝洞系统划分与形成机制[J]. 石油与天然气地质, 2022, 43(1): 54-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201004.htm
HUANG Cheng, YUN Lu, CAO Zicheng, et al. Division and formation mechanism of fault-controlled fracture-vug system of the Middle-to-Lower Ordovician, Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 54-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201004.htm
|
[9] |
漆立新, 云露, 曹自成, 等. 顺北油气田地质储量评估与油气勘探方向[J]. 新疆石油地质, 2021, 42(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102001.htm
QI Lixin, YUN Lu, CAO Zicheng, et al. Geological reserves assessment and petroleum exploration targets in Shunbei oil & gas field[J]. Xinjiang Petroleum Geology, 2021, 42(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102001.htm
|
[10] |
李映涛, 漆立新, 张哨楠, 等. 塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J]. 石油学报, 2019, 40(12): 1470-1484. doi: 10.7623/syxb201912006
LI Yingtao, QI Lixin, ZHANG Shaonan, et al. Characteristics and development mode of the Middle and Lower Ordovician fault-karst reservoir in Shunbei area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12): 1470-1484. doi: 10.7623/syxb201912006
|
[11] |
吕海涛, 韩俊, 张继标, 等. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J]. 石油实验地质, 2021, 43(1): 14-22. doi: 10.11781/sysydz202101014
LV Haitao, HAN Jun, ZHANG Jibiao, et al. Development characte-ristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area, Tarim Basin[J]. Petroleum Geo-logy & Experiment, 2021, 43(1): 14-22. doi: 10.11781/sysydz202101014
|
[12] |
马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htm
MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htm
|
[13] |
金之钧, 朱东亚, 胡文瑄, 等. 塔里木盆地热液活动地质地球化学特征及其对储层影响[J]. 地质学报, 2006, 80(2): 245-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200602014.htm
JIN Zhijun, ZHU Dongya, HU Wenxuan, et al. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin[J]. Acta Geologica Sinica, 2006, 80(2): 245-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200602014.htm
|
[14] |
金之钧, 朱东亚, 孟庆强, 等. 塔里木盆地热液流体活动及其对油气运移的影响[J]. 岩石学报, 2013, 29(3): 1048-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303026.htm
JIN Zhijun, ZHU Dongya, MENG Qingqiang, et al. Hydrothermal activites and influences on migration of oil and gas in Tarim Basin[J]. Acta Petrologica Sinica, 2013, 29(3): 1048-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303026.htm
|
[15] |
QING Hairuo, CHI Guoxiang, ZHANG Shaonan. Origin of coarse-crystalline calcite cement in Early Ordovician carbonate rocks, Ordos Basin, northern China: insights from oxygen and carbon isotopes and fluid inclusion microthermometry[J]. Journal of Geochemical Exploration, 2006, 89(1/3): 344-347.
|
[16] |
DONG Shaofeng, CHEN Daizhao, QING Hairuo, et al. Hydrothermal alteration of dolostones in the Lower Ordovician, Tarim Basin, NW China: multiple constraints from petrology, isotope geochemistry and fluid inclusion microthermometry[J]. Marine and Petroleum Geology, 2013, 46: 270-286.
|
[17] |
DONG Shaofeng, CHEN Daizhao, ZHOU Xiqiang, et al. Tectonically driven dolomitization of Cambrian to Lower Ordovician carbonates of the Quruqtagh area, north-eastern flank of Tarim Basin, north-west China[J]. Sedimentology, 2017, 64(4): 1079-1106.
|
[18] |
李映涛, 叶宁, 袁晓宇, 等. 塔里木盆地顺南4井中硅化热液的地质与地球化学特征[J]. 石油与天然气地质, 2015, 36(6): 934-944. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506010.htm
LI Yingtao, YE Ning, YUAN Xiaoyu, et al. Geological and geochemical characteristics of silicified hydrothermal fluids in well Shunnan 4, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(6): 934-944. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506010.htm
|
[19] |
LU Ziye, CHEN Honghan, QING Hairuo, et al. Petrography, fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area, Tarim Basin, NW China: implications for the nature and timing of silicification[J]. Sedimentary Geology, 2017, 359: 29-43.
|
[20] |
滕建彬. 东营凹陷页岩油储层中方解石的成因及证据[J]. 油气地质与采收率, 2020, 27(2): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002004.htm
TENG Jianbin. Origin and evidence of calcite in shale oil reservoir of Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002004.htm
|
[21] |
MORROW D W. Zebra and boxwork fabrics in hydrothermal dolomites of northern Canada: indicators for dilational fracturing, dissolution or in situ replacement?[J]. Sedimentology, 2014, 61(4): 915-951.
|
[22] |
JIANG Lei, CAI Chunfang, WORDEN R H, et al. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China[J]. Sedimentology, 2016, 63(7): 2130-2157.
|
[23] |
邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm
DENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm
|
[24] |
邓尚, 李慧莉, 韩俊, 等. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J]. 石油与天然气地质, 2019, 40(5): 990-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905004.htm
DENG Shang, LI Huili, HAN Jun, et al. Characteristics of the central segment of Shunbei 5 strike-slip fault zone in Tarim Basin and its geological significance[J]. Oil & Gas Geology, 2019, 40(5): 990-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905004.htm
|
[25] |
LI Bing, ZHAO Rui, KONG Qiangfu, et al. An Ordovician carbonate reservoir in strike-slip structures producing from faultassociated fracture systems, 3D seismic region of northern Shun 8 block (Tarim Basin)[J]. Carbonates and Evaporites, 2019, 34(3): 545-556.
|
[26] |
DENG Shang, LI Huili, ZHANG Zhongpei, et al. Structural characte-rization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137.
|
[27] |
QIU Huabiao, DENG Shang, CAO Zicheng, et al. The evolution of the complex anticlinal belt with crosscutting strike-slip faults in the central Tarim Basin, NW China[J]. Tectonics, 2019, 38(6): 2087-2113.
|
[28] |
陈槚俊, 何登发, 孙方源, 等. 塔北古隆起的三维地质结构及相关问题探讨[J]. 地学前缘, 2019, 26(1): 121-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901014.htm
CHEN Jiajun, HE Dengfa, SUN Fangyuan, et al. Three-dimensional geological modeling of the Tabei paleo-uplift and discussion on related issues[J]. Earth Science Frontiers, 2019, 26(1): 121-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901014.htm
|
[29] |
黄太柱, 蒋华山, 马庆佑. 塔里木盆地下古生界碳酸盐岩油气成藏特征[J]. 石油与天然气地质, 2014, 35(6): 780-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406007.htm
HUANG Taizhu, JIANG Huashan, MA Qingyou. Hydrocarbon accumulation characteristics in Lower Paleozoic carbonate reservoirs of Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 780-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406007.htm
|
[30] |
TONG Xirun, LIU Yongsheng, HU Zhaochu, et al. Accurate determination of Sr isotopic compositions in clinopyroxene and silicate glasses by LA-MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2016, 40(1): 85-99.
|
[31] |
PATON C, HELLSTROM J, PAUL B, et al. Iolite: freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508-2518.
|
[32] |
沈安江, 胡安平, 程婷, 等. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩—孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1062-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906006.htm
SHEN Anjiang, HU Anping, CHENG Ting, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1062-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906006.htm
|
[33] |
VAN SMEERDIJK HOOD A, WALLACE M W. Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of southern Australia[J]. Precambrian Research, 2015, 261: 96-111.
|
[34] |
BAU M, MÖLLER P. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite[J]. Mineralogy & Petrology, 1992, 45(3): 231-246.
|
[35] |
CAI Chunfang, LI Kaikai, LI Hongtao, et al. Evidence for cross formational hot brine flow from integrated 87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in central Tarim, China[J]. Applied Geochemistry, 2008, 23(8): 2226-2235.
|
[36] |
BAU M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 1991, 93(3/4): 219-230.
|
[37] |
GONG Qiaolin, LI Fei, LU Chaojin, et al. Tracing seawater- and terrestrial-sourced REE signatures in detritally contaminated, diagenetically altered carbonate rocks[J]. Chemical Geology, 2021, 570: 120169.
|
[38] |
BAU M, ROMER R L, LVDERS V, et al. Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr-Nd-Pb isotopes in fluorite from MVT deposits in the Pennine Orefield, England[J]. Mineralium Deposita, 2003, 38(8): 992-1008.
|
[39] |
BAU M, DULSKI P. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids[J]. Contributions to Mineralogy and Petrology, 1995, 119(2/3): 213-223.
|
[40] |
MIGDISOV A, WILLIAMS-JONES A E, BRUGGER J, et al. Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations[J]. Chemical Geology, 2016, 439: 13-42.
|
[41] |
MACHEL H. Bacterial and thermochemical sulfate reduction in diagenetic settings: old and new insights[J]. Sedimentary Geology, 2001, 140(1/2): 143-175.
|
[42] |
LI Fei, YAN Jiaxin, BURNE R V, et al. Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 96-107.
|
[43] |
MCARTHUR J M, HOWARTH R J, BAILEY T R. Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age[J]. The Journal of Geology, 2001, 109(2): 155-170.
|
[44] |
ZHU Dongya, LIU Quanyou, ZHANG Juntao, et al. Types of fluid alteration and developing mechanism of deep marine carbonate reservoirs[J]. Geofluids, 2019, 2019: 3630915.
|
[45] |
GE Xiang, SHEN Chuanbo, ZHOU Renjie, et al. Tracing fluid evolution in sedimentary basins with calcite geochemical, isotopic and U-Pb geochronological data: implications for petroleum and mineral resource accumulation in the Nanpanjiang Basin, South China[J]. GSA Bulletin, 2021, https://doi.org/10.1130/B36168.1.
|
[46] |
崔军文, 唐哲民. 塔里木盆地构造格架和构造应力场分析[J]. 岩石学报, 2011, 27(1): 231-242. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101016.htm
CUI Junwen, TANG Zhemin. Tectonic framework of the Tarim Basin and its tectonic stress field analysis[J]. Acta Petrologica Sinica, 2011, 27(1): 231-242. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101016.htm
|
[47] |
MACHEL H G, CAVELL P A. Low-flux, tectonically-induced squeegee fluid flow ("hot flash") into the Rocky Mountain Foreland Basin[J]. Bulletin of Canadian Petroleum Geology, 1999, 47(4): 510-533.
|
[48] |
WENZ Z J, APPOLD M S, SHELTON K L, et al. Geochemistry of Mississippi Valley-type mineralizing fluids of the Ozark Plateau: a regional synthesis[J]. American Journal of Science, 2012, 312(1): 22-80.
|
[49] |
GABELLONE T, GASPARRINI M, IANNACE A, et al. Fluid channeling along thrust zones: the Lagonegro case history, southern Apennines, Italy[J]. Geofluids, 2013, 13(2): 140-158.
|