Citation: | GUO Tingting, ZHU Bi, YANG Tao, CHEN Yongquan. Evolution of sedimentary environment of the Lower Cambrian Xishanbulake-Xidashan formations in the Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(2): 252-265. doi: 10.11781/sysydz202302252 |
[1] |
朱茂炎, 杨爱华, 袁金良, 等. 中国寒武纪综合地层和时间框架[J]. 中国科学(地球科学), 2019, 49(1): 26-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901004.htm
ZHU Maoyan, YANG Aihua, YUAN Jinliang, et al. Cambrian integrative stratigraphy and timescale of China[J]. Science China(Earth Sciences), 2019, 62(1): 25-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901004.htm
|
[2] |
JIN Chengsheng, LI Chao, ALGEO T J, et al. A highly redox-heterogeneous ocean in South China during the early Cambrian(~529-514 Ma): implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51. doi: 10.1016/j.epsl.2016.02.019
|
[3] |
LI Chao, JIN Chengsheng, PLANAVSKY N J, et al. Coupled oceanic oxygenation and metazoan diversification during the early-middle Cambrian?[J]. Geology, 2017, 45(8): 743-746. http://www.onacademic.com/detail/journal_1000039922806510_3e61.html
|
[4] |
CHEN Xi, LING Hongfei, VANCE D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6: 7142. doi: 10.1038/ncomms8142
|
[5] |
WEI Guangyi, PLANAVSKY N J, HE Tianchen, et al. Global marine redox evolution from the Late Neoproterozoic to the Early Paleozoic constrained by the integration of Mo and U isotope records[J]. Earth-Science Reviews, 2021, 214: 103506. doi: 10.1016/j.earscirev.2021.103506
|
[6] |
HAMMARLUND E U, GAINES R R, PROKOPENKO M G, et al. Early Cambrian oxygen minimum zone-like conditions at Chengjiang[J]. Earth and Planetary Science Letters, 2017, 475: 160-168. doi: 10.1016/j.epsl.2017.06.054
|
[7] |
杨赟昊, 高志前, 樊太亮, 等. 下寒武统黑色岩系沉积环境与控烃差异: 以塔里木盆地西北缘和东北缘为例[J]. 断块油气田, 2022, 29(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202201008.htm
YANG Yunhao, GAO Zhiqian, FAN Tailiang, et al. The diffe-rences of sedimentary environment and hydrocarbon control of Lower Cambrian black rock series: a case study of northwestern and northeastern margin, Tarim Basin[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202201008.htm
|
[8] |
郑见超, 李斌, 袁倩, 等. 塔里木盆地巴楚-塔北地区深层寒武系油气成藏过程与勘探方向[J]. 石油与天然气地质, 2022, 43(1): 79-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201006.htm
ZHENG Jianchao, LI Bin, YUAN Qian, et al. Hydrocarbon accumulation process and exploration direction of the deep Cambrian in Bachu-Tabei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 79-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201006.htm
|
[9] |
曹自成, 徐勤琪, 余腾孝, 等. 二次生烃与古油藏原油裂解对油气成藏的意义: 以塔里木盆地巴楚-麦盖提地区寒武系烃源岩为例[J]. 新疆石油地质, 2021, 42(2): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102003.htm
CAO Zicheng, XU Qinqi, YU Tengxiao, et al. Significance of secon-dary hydrocarbon generation and crude oil cracking in paleo-reservoirs to hydrocarbon accumulation: a case study of Cambrian source rocks in Bachu-Maigaiti area of Tarim Basin[J]. Xinjiang Petroleum Geology, 2021, 42(2): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102003.htm
|
[10] |
李峥. 塔里木盆地中、下寒武统沉积演化与沉积相研究[D]. 北京: 中国石油大学(北京), 2016.
LI Zheng. The research of sedimentary evolution and sedimentary facies in Middle and Lower Cambrian in Tarim Basin[D]. Beijing: China University of Petroleum (Beijing), 2016.
|
[11] |
陈永权, 张艳秋, 周鹏, 等. 塔里木盆地寒武系苗岭统碳同位素地层学与等时对比[J]. 地层学杂志, 2019, 43(3): 324-332. doi: 10.19839/j.cnki.dcxzz.2019.03.009
CHEN Yongquan, ZHANG Yanqiu, ZHOU Peng, et al. Carbon isotope stratigraphy and correlation of the Cambrian Miaolingian strata, Tarim Basin[J]. Journal of Stratigraphy, 2019, 43(3): 324-332. doi: 10.19839/j.cnki.dcxzz.2019.03.009
|
[12] |
贾承造, 魏国齐, 姚慧君, 等. 盆地构造演化与区域构造地质[M]. 北京: 石油工业出版社, 1995: 1-50.
JIA Chengzao, WEI Guoqi, YAO Huijun, et al. Tectonic evolution and regional tectonic geology of Tarim Basin[M]. Beijing: Petroleum Industry Press, 1995: 1-50.
|
[13] |
杨永剑, 刘家铎, 田景春, 等. 塔里木盆地寒武纪层序岩相古地理特征[J]. 天然气地球科学, 2011, 22(3): 450-459. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103012.htm
YANG Yongjian, LIU Jiaduo, TIAN Jingchun, et al. Sequence lithofacies paleogeography of Cambrian in Tarim Basin[J]. Natural Gas Geoscience, 2011, 22(3): 450-459. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103012.htm
|
[14] |
刘伟, 张光亚, 潘文庆, 等. 塔里木地区寒武纪岩相古地理及沉积演化[J]. 古地理学报, 2011, 13(5): 529-538. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201105012.htm
LIU Wei, ZHANG Guangya, PAN Wenqing, et al. Lithofacies palaeogeography and sedimentary evolution of the Cambrian in Tarim area[J]. Journal of Palaeogeography, 2011, 13(5): 529-538. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201105012.htm
|
[15] |
田雷, 崔海峰, 刘军, 等. 塔里木盆地早、中寒武世古地理与沉积演化[J]. 石油与天然气地质, 2018, 39(5): 1011-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805016.htm
TIAN Lei, CUI Haifeng, LIU Jun, et al. Early-Middle Cambrian paleogeography and depositional evolution of Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 1011-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805016.htm
|
[16] |
朱光有, 闫慧慧, 陈玮岩, 等. 塔里木盆地东部南华系-寒武系黑色岩系地球化学特征及形成与分布[J]. 岩石学报, 2020, 36(11): 3442-3462. doi: 10.18654/1000-0569/2020.11.12
ZHU Guangyou, YAN Huihui, CHEN Weiyan, et al. Geochemical characteristics, formation and distribution of the Nanhua-Cambrian black rockseries in the eastern Tarim Basin[J]. Acta Petrologica Sinica, 2020, 36(11): 3442-3462. doi: 10.18654/1000-0569/2020.11.12
|
[17] |
YAO Jinxian, XIAO Shuhai, YIN Leiming, et al. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, North-west China): systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs[J]. Palaeontology, 2005, 48(4): 687-708. doi: 10.1111/j.1475-4983.2005.00484.x
|
[18] |
蔡习尧, 窦丽玮, 蒋华山, 等. 塔里木盆地塔东地区寒武系划分与对比[J]. 石油实验地质, 2014, 36(5): 539-545. doi: 10.11781/sysydz201405539
CAI Xiyao, DOU Liwei, JIANG Huashan, et al. Classification and correlation of Cambrian in eastern Tarim Basin[J]. Petroleum Geology & Experiment, 2014, (5): 539-545. doi: 10.11781/sysydz201405539
|
[19] |
钟端, 郝永祥. 寒武系[M]//石油管理局南疆石油勘探公司, 滇黔桂石油勘探局石油地质科学研究所. 塔里木盆地震旦纪至二叠纪地层古生物(I). 南京: 南京大学出版社, 1990: 16-40.
ZHONG Duan, HAO Yongxiang. Cambrian[M]//Nanjiang Petroleum Exploration Company of Petroleum Administration Bureau, Institute of Petroleum Geology, Yunnan-Guizhou-Guangxi Petroleum Exploration Bureau. Stratigraphy and palaeontology seismic from Sinian to Permian in the Tarim Basin(I). Nanjing: Nanjing University Press, 1990: 16-40.
|
[20] |
TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks[J]. Journal of Geology, 1985, 94(4): 632-633. http://docgbr785.firebaseapp.com/aa558/the-continental-crust-its-composition-and-evolution-an-examination-of-the-geochemical-record-preserved-in-sedimentary-rocks-by-stuart-r-taylor-scott-m-mclennan-0632011483.pdf
|
[21] |
SCHOEPFER S D, SHEN Jun, WEI Hengye, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as pro-xies for paleomarine productivity[J]. Earth-Science Reviews, 2015, 149: 23-52. http://www.researchgate.net/profile/Jun_Shen7/publication/296294808_2015-Schoepfer-etal-ESR/links/56d4094d08ae66f3498efd44.pdf
|
[22] |
ALGEO T J, LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography and Paleoclimatology, 2006, 21(1): PA1016. doi: 10.1029/2004PA001112/full
|
[23] |
ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0009254109003805&originContentFamily=serial&_origin=article&_ts=1430274688&md5=530cf4a7f0f5b85872808855ee9901a9
|
[24] |
SWEERE T, VAN DEN BOORN S, DICKSON A J, et al. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations[J]. Chemical Geology, 2016, 441: 235-245.
|
[25] |
CHENG Meng, LI Chao, ZHOU Lian, et al. Marine Mo biogeochemistry in the context of dynamically euxinic mid-depth waters: a case study of the Lower Cambrian Niutitang shales, South China[J]. Geochimica et Cosmochimica Acta, 2016, 183: 79-93. http://smartsearch.nstl.gov.cn/paper_detail.html?id=c485f771e33f1dc1b8c7f22432b6e37f
|
[26] |
XU Lingang, LEHMANN B, MAO Jingwen, et al. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: multi-proxy constraints on the paleoenvironment[J]. Chemical Geology, 2012, 318-319: 45-59. http://lmr.imr.net.cn/UploadFiles/2014_5_22/2012%20%20Mo%20isotope%20and%20trace%20element%20patterns%20of%20Lower%20Cambrian%20black%20shales%20in%20South%20China%20Multi-proxy%20constraints%20on%20the%20paleoenvironment.pdf
|
[27] |
WEN Hanjie, FAN Haifeng, ZHANG Yuxu, et al. Reconstruction of Early Cambrian ocean chemistry from Mo isotopes[J]. Geochimica et Cosmochimica Acta, 2015, 164: 1-16. http://www.onacademic.com/detail/journal_1000037719210310_7577.html
|
[28] |
金承胜. 华南寒武纪早期海洋氧化还原状态时空波动及其与早期动物的协同演化[D]. 武汉: 中国地质大学, 2017.
JIN Chengsheng. Spatiotemporal variations of ocean redox conditions and its Co-evolution with early animals during the Early Cambrian, South China[D]. Wuhan: China University of Geosciences, 2017.
|
[29] |
WILLE M, NÄGLER T F, LEHMANN B, et al. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J]. Nature, 2008, 453(7196): 767-769. http://www.nature.com/nature/journal/v453/n7196/pdf/nature07072.pdf
|
[30] |
YU Bingsong, DONG Hailiang, WIDOM E, et al. Geochemistry of basal Cambrian black shales and cherts from the northern Tarim Basin, Northwest China: implications for depositional setting and tectonic history[J]. Journal of Asian Earth Sciences, 2009, 34(3): 418-436. http://www.sciencedirect.com/science/article/pii/S1367912008001065
|
[31] |
OCH L M, SHIELDS-ZHOU G A, POULTON S W, et al. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China[J]. Precambrian Research, 2013, 225: 166-189. http://www.researchgate.net/profile/Lawrence_Och/publication/235428471_Redox_changes_in_Early_Cambrian_black_shales_at_Xiaotan_section_Yunnan_Province_South_China/links/0912f5118c58a6fe4f000000
|
[32] |
CHENG Meng, LI Chao, ZHOU Lian, et al. Transient deep-water oxygenation in the Early Cambrian Nanhua Basin, South China[J]. Geochimica et Cosmochimica Acta, 2017, 210: 42-58. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0016703717302557&originContentFamily=serial&_origin=article&_ts=1493701554&md5=c73141ebff36e54ffa6af4c7394d7a8f
|
[33] |
CALVERT S E, PEDERSEN T F. Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales[J]. Economic Geology, 1996, 91(1): 36-47. http://www.onacademic.com/detail/journal_1000035953375210_bce2.html
|
[34] |
HÄUSLER K, DELLWIG O, SCHNETGER B, et al. Massive Mn carbonate formation in the Landsort Deep (Baltic Sea): hydro-graphic conditions, temporal succession, and Mn budget calculations[J]. Marine Geology, 2018, 395: 260-270. http://www.onacademic.com/detail/journal_1000040118999410_f4d2.html
|
[35] |
TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
|
[36] |
BENNETT W W, CANFIELD D E. Redox-sensitive trace metals as paleoredox proxies: a review and analysis of data from modern sediments[J]. Earth-Science Reviews, 2020, 204: 103175.
|
[37] |
ALGEO T J, INGALL E. Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3/4): 130-155. http://www.researchgate.net/profile/Thomas_Algeo/publication/223428502_Sedimentary_CorgP_ratios_paleocean_ventilation_and_Panerozoic_atmospheric_pO2/links/0c96051c53df9c7a41000000.pdf
|
[38] |
ALGEO T J, LI Chao. Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta, 2020, 287: 8-26. http://www.sciencedirect.com/science/article/pii/S0016703720300788
|
[39] |
LENZ C, JILBERT T, CONLEY D J, et al. Are recent changes in sediment manganese sequestration in the euxinic basins of the Baltic Sea linked to the expansion of hypoxia?[J]. Biogeosciences, 2015, 12(16): 4875-4894. http://discovery.ucl.ac.uk/1470535/1/Lenz_et_al_20015_bg-12-4875-2015.pdf
|
[40] |
SCOTT C, LYONS T W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies[J]. Chemical Geology, 2012, 324-325: 19-27. http://www.onacademic.com/detail/journal_1000035622213210_81c5.html
|
[41] |
ZHANG Yuying, HE Zhiliang, JIANG Shu, et al. Marine redox stratification during the Early Cambrian (ca. 529-509 Ma) and its control on the development of organic-rich shales in Yangtze Platform[J]. Journal of Technology & Science, 2017, 18(6): 2354-2369. doi: 10.1002/2017GC006864
|
[42] |
邓倩. 震旦系-下寒武统沉积地球化学记录及有机质富集保存机制探讨: 以华南和塔里木盆地研究为例[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2021.
DENG Qian. Sedimentary geochemical records and organic matter accumulation mechanisms in the Sinian-Lower Cambrian strata: case studies in South China and the Tarim Basin, NW China[D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2021.
|
[43] |
WOOD R, ERWIN D H. Innovation not recovery: dynamic redox promotes metazoan radiations[J]. Biological Reviews, 2018, 93(2): 863-873. http://repository.si.edu/bitstream/handle/10088/33999/2017%20Wood%20%26%20Erwin%20BiolRev%20Dynamic%20redox%20promotes%20metazoan%20innovation.pdf?sequence=1&isAllowed=y
|
[44] |
MURPHY A E, SAGEMAN B B, HOLLANDER D J, et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling[J]. Paleoceanography and Paleoclimatology, 2000, 15(3): 280-291. doi: 10.1029/1999PA000445
|
[45] |
IVERSEN M H, PLOUG H. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates[J]. Biogeosciences, 2010, 7(9): 2613-2624. http://epic.awi.de/22376/1/Ive2010b.pdf
|
[46] |
TYSON R V. The "productivity versus preservation" controversy: cause, flaws, and resolution[M]//HARRIS N B. The deposition of organic-carbon-rich sediments: models, mechanisms, and consequences. Tulsa, Okla: SEPM, 2005: 17-33.
|
[47] |
LITTLE S H, VANCE D, LYONS T W. Controls on trace metal authigenic enrichment in reducing sediments: insights from modern oxygen-deficient settings[J]. American Journal of Science, 2015, 315(2): 77-119.
|
[48] |
GUILBAUD R, SLATER B J, POULTON S W, et al. Oxygen minimum zones in the Early Cambrian ocean[J]. Geochemical Perspectives Letters, 2018, 6: 33-38.
|
[49] |
LI Chao, LOVE G D, LYONS T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5974): 80-83. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.725.9428&rep=rep1&type=pdf
|
[50] |
张水昌, WANG R L, 金之钧, 等. 塔里木盆地寒武纪-奥陶纪优质烃源岩沉积与古环境变化的关系: 碳氧同位素新证据[J]. 地质学报, 2006, 80(3): 459-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603020.htm
ZHANG Shuichang, WANG R L, JIN Zhijun. The relationship between the Cambrian-Ordovician high-TOC source rock deve-lopment and paleoenvironment variations in the Tariam Basin, Western China: carbon and oxygen isotope evidence[J]. Acta Geologica Sinica, 2006, 80(3): 459-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603020.htm
|
[51] |
谢巍, 李一凡, 刘旺威. 塔里木盆地东北缘下寒武统泥页岩古气候与物源背景研究[J/OL]. 沉积学报, 2021-12-22: 1-20.
XIE Wei, LI Yifan, LIU Wangwei. Paleoclimate and provenance of Lower Cambrian shales in northeastern margin of Tarim Basin[J/OL]. Acta Sedimentologica Sinica, 2021-12-22: 1-20.
|
[52] |
ZHU Bi, YANG Tao, WANG Jin, et al. Multiple controls on the paleoenvironment of the Early Cambrian black shale-chert in the northwest Tarim Basin, NW China: trace element, iron speciation and Mo isotopic evidence[J]. Marine and Petroleum Geology, 2022, 136: 105434.
|
[53] |
LI Chao, SHI Wei, CHENG Meng, et al. The redox structure of Ediacaran and Early Cambrian oceans and its controls[J]. Science Bulletin, 2020, 65(24): 2141-2149. http://www.sciengine.com/doi/pdf/10123AE9C2344B559820A833DBF2C4F3
|