Citation: | LIU Yang, ZHANG Gong, QIN Yingyao, ZHANG Jiacheng, LI Sen. Effects of magnetic field intensity and gradient on measurement results of core nuclear magnetic resonance T2 spectrum[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(2): 378-384. doi: 10.11781/sysydz202302378 |
[1] |
王伟, 赵延伟, 毛锐, 等. 页岩油储层核磁有效孔隙度起算时间的确定: 以吉木萨尔凹陷二叠系芦草沟组页岩油储层为例[J]. 石油与天然气地质, 2019, 40(3): 550-557. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903011.htm
WANG Wei, ZHAO Yanwei, MAO Rui, et al. Determination of the starting time for measurement of NMR effective porosity in shale oil reservoir: a case study of the Permian Lucaogou shale oil reservoir, Jimusaer Sag[J]. Oil & Gas Geology, 2019, 40(3): 550-557. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903011.htm
|
[2] |
彭石林, 胡以良, 刘崇汉. 岩心核磁共振实验分析与常规物性测量对比[J]. 测井技术, 1998, 22(S1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS8S1.001.htm
PENG Shilin, HU Yiliang, LIU Chonghan. Comparison between core NMR experimental analysis and conventional physical property measurement[J]. Well Logging Technology, 1998, 22(S1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS8S1.001.htm
|
[3] |
邓克俊. 核磁共振测井理论及应用[M]. 东营: 中国石油大学出版社, 2010.
DENG Kejun. Nuclear magnetic resonance logging theory and application[M]. Dongying: China University of Petroleum Press, 2010.
|
[4] |
ANAND V, ALI M R, AL-ADANI N, et al. New generation NMR tool for robust, continuous T1 and T2 measurements[C]//Proceedings of SPWLA 201656th Annual Logging Symposium. Long Beach: SPWLA, 2015.
|
[5] |
王俊明, 邵维志, 韩成, 等. MRIL-Prime核磁共振测井仪[J]. 石油仪器, 2002, 16(6): 18-20. doi: 10.3969/j.issn.1004-9134.2002.06.007
WANG Junming, SHAO Weizhi, HAN Cheng, et al. MRIL-Prime nuclear magnetic resonant image logging tool[J]. Petroleum Instruments, 2002, 16(6): 18-20. doi: 10.3969/j.issn.1004-9134.2002.06.007
|
[6] |
邰子伟, 刘德叶, 黎明华. 三种核磁共振测井仪器的比较[J]. 核电子学与探测技术, 2006, 26(6): 1049-1051. doi: 10.3969/j.issn.0258-0934.2006.06.095
TAI Ziwei, LIU Deye, LI Minghua. The comparison for three type of NMR logging tool[J]. Nuclear Electronics & Detection Technology, 2006, 26(6): 1049-1051. doi: 10.3969/j.issn.0258-0934.2006.06.095
|
[7] |
孙中良, 李志明, 申宝剑, 等. 核磁共振技术在页岩油气储层评价中的应用[J]. 石油实验地质, 2022, 44(5): 930-940. doi: 10.11781/sysydz202205930
SUN Zhongliang, LI Zhiming, SHEN Baojian, et al. NMR technology in reservoir evaluation for shale oil and gas[J]. Petroleum Geology & Experiment, 2022, 44(5): 930-940. doi: 10.11781/sysydz202205930
|
[8] |
江昀, 许国庆, 石阳, 等. 致密岩心带压渗吸规律实验研究[J]. 石油实验地质, 2021, 43(1): 144-153. doi: 10.11781/sysydz202101144
JIANG Yun, XU Guoqing, SHI Yang, et al. Forced imbibition in tight glutenite cores[J]. Petroleum Geology & Experiment, 2021, 43(1): 144-153. doi: 10.11781/sysydz202101144
|
[9] |
谢然红, 肖立志, 刘天定. 原油的核磁共振弛豫特性[J]. 西南石油大学学报, 2007, 29(5): 21-24. doi: 10.3863/j.issn.1674-5086.2007.05.006
XIE Ranhong, XIAO Lizhi, LIU Tianding. NMR relaxation properties of crude oils[J]. Journal of Southwest Petroleum University, 2007, 29(5): 21-24. doi: 10.3863/j.issn.1674-5086.2007.05.006
|
[10] |
KAUSIK R, FELLAH K, FENG L, et al. High- and low-field NMR relaxometry and diffusometry of the Bakken petroleum system[J]. Petrophysics, 2017, 58(4): 341-351. http://www.nstl.gov.cn/paper_detail.html?id=ef053bfa5ff1c09e22fe287680dcc029
|
[11] |
TROMP R R, PEL L. NMR T1 dispersion of crude oils from 10 kHz to 20 MHz[J]. Journal of Magnetic Resonance, 2021, 325: 106949. doi: 10.1016/j.jmr.2021.106949
|
[12] |
KORB J P. Nuclear magnetic relaxation of liquids in porous media[J]. New Journal of Physics, 2011, 13(3): 035016. doi: 10.1088/1367-2630/13/3/035016
|
[13] |
CUI Yingzhi, SHIKHOV I, LI Rupeng, et al. A numerical study of field intensity and clay morphology impact on NMR transverse relaxation in glutenites[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108521. http://www.sciencedirect.com/science/article/pii/S0920410521001807
|
[14] |
覃莹瑶, 张宫, 张嘉伟, 等. 磁场强度对T2-T1二维核磁共振实验的影响研究[J]. 地球物理学进展, 2021, 36(5): 2082-2089. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202105030.htm
QIN Yingyao, ZHANG Gong, ZHANG Jiawei, et al. Study on the influence of magnetic field intensity on T2-T1 two-dimensional nuclear magnetic resonance experiment[J]. Progress in Geophysics, 2021, 36(5): 2082-2089. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202105030.htm
|
[15] |
梁灿, 肖立志, 周灿灿, 等. 岩石润湿性的核磁共振表征方法与初步实验结果[J]. 地球物理学报, 2019, 62(11): 4472-4481. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201911039.htm
LIANG Can, XIAO Lizhi, ZHOU Cancan, et al. Nuclear magnetic resonance characterizes rock wettability: preliminary experimental results[J]. Chinese Journal of Geophysics, 2019, 62(11): 4472-4481. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201911039.htm
|
[16] |
余玥, 孙一迪, 高睿, 等. 基于T2截止值确定致密岩心表面弛豫率[J]. 石油实验地质, 2022, 44(2): 342-349. doi: 10.11781/sysydz202202342
YU Yue, SUN Yidi, GAO Rui, et al. Determination of surface relaxivity for tight glutenite cores based on T2 cut-off value[J]. Petroleum Geology & Experiment, 2022, 44(2): 342-349. doi: 10.11781/sysydz202202342
|
[17] |
MCDONALD P J, KORB J P, MITCHELL J, et al. Surface relaxation and chemical exchange in hydrating cement pastes: a two-dimensional NMR relaxation study[J]. Physical Review E, 2005, 72(1): 011409. http://www.xueshufan.com/publication/2134673969
|
[18] |
GODEFROY S, KORB J P, FLEURY M, et al. Surface nuclear magnetic relaxation and dynamics of water and oil in macroporous media[J]. Physical Review E, 2001, 64(2): 021605. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLEEE8000064000002021605000001&idtype=cvips&gifs=Yes
|
[19] |
COATES G, 肖立志, PRAMMER M. 核磁共振测井原理与应用[M]. 孟繁莹, 译. 北京: 石油工业出版社, 2007.
COATES G, XIAO Lizhi, PRAMMER M. Principles and applications of NMR logging[M]. MENG Fanying, trans. Beijing: Petroleum Industry Press, 2007.
|
[20] |
张宫, 何宗斌, 曹文倩, 等. 回波间隔对核磁共振表观孔隙度的影响及矫正方法[J]. 波谱学杂志, 2020, 37(2): 172-181. https://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ202002005.htm
ZHANG Gong, HE Zongbin, CAO Wenqian, et al. Effects of echo time on NMR apparent porosity and correction methods[J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 172-181. https://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ202002005.htm
|
[21] |
毛克宇. 火成岩核磁共振数值模拟与影响因素分析[J]. 地球物理学进展, 2015, 30(4): 1755-1762. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201504031.htm
MAO Keyu. Analysis on influence factors based on NMR simulation in igneous rocks[J]. Progress in Geophysics, 2015, 30(4): 1755-1762. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201504031.htm
|
[22] |
国家能源局. SY/T 6490-2014, 岩样核磁共振参数实验室测量规范[S]. 北京: 石油工业出版社, 2015.
National Energy Administration. SY/T 6490-2014, Specification for measurement of rock NMR parameter in laboratory[S]. Beijing: Petroleum Industry Press, 2015.
|
[23] |
刘欢, 徐锦绣, 郑炀, 等. 渤海J油田储层核磁共振测井孔隙度影响因素分析及校正[J]. 波谱学杂志, 2020, 37(3): 370-380. https://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ202003011.htm
LIU Huan, XU Jinxiu, ZHENG Yang, et al. Factors affecting and correction methods for porosity measured by NMR logging in the J oilfield of Bohai Bay[J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 370-380. https://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ202003011.htm
|
[24] |
张宫, 冯庆付, 武宏亮, 等. 基于核磁T2谱对数均值差异的碳酸盐岩气水识别[J]. 天然气地球科学, 2017, 28(8): 1243-1249. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201708012.htm
ZHANG Gong, FENG Qingfu, WU Hongliang, et al. Gas-water identification of carbonate reservoir based on log mean difference of T2 spectrum[J]. Natural Gas Geoscience, 2017, 28(8): 1243-1249. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201708012.htm
|