Volume 46 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
LU Longfei, TAO Guoliang, WAN Junyu, SHEN Baojian, PAN Anyang, QIN Jianzhong. Siliceous and calcareous sources in marine high-quality hydrocarbon source rocks: skeleton-wall-shell of organism and their debris[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1157-1165. doi: 10.11781/sysydz2024061157
Citation: LU Longfei, TAO Guoliang, WAN Junyu, SHEN Baojian, PAN Anyang, QIN Jianzhong. Siliceous and calcareous sources in marine high-quality hydrocarbon source rocks: skeleton-wall-shell of organism and their debris[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1157-1165. doi: 10.11781/sysydz2024061157

Siliceous and calcareous sources in marine high-quality hydrocarbon source rocks: skeleton-wall-shell of organism and their debris

doi: 10.11781/sysydz2024061157
  • Received Date: 2023-10-08
  • Rev Recd Date: 2024-09-02
  • Publish Date: 2024-11-28
  • Using techniques such as ultra-microscopic organic petrology, the study explores the relationship between bioclasts such as siliceous and calcareous skeleton-wall-shell organism and high-quality hydrocarbon source rocks in terms of their biomolecular composition and stability. Common organisms containing biosilica and siliceous derivatives are mainly radiolarians and other protozoa, sponges, diatoms, chrysophytes, and the siliceous skeleton-wall-shell and debris of some planktonic algae like scales-bearing dinoflagellates. The biogenic calcium preserved in high-quality hydrocarbon source rocks is mainly derived from calcareous skeleton-wall-shell and their debris of animals such as planktonic foraminifera and pteropods and planktonic algae like coccolithophores or acritarchs. These biogenic siliceous and calcareous skeleton-wall-shell debris particles often contain varying amounts of organic matter (pectin or scleroprotein, equivalent to type Ⅲ organic matter), which can generate a certain amount of hydrocarbons at high to over-mature stages and can be preserved in the native pores of biological structures.

     

  • Authors LU Longfei, TAO Guoliang, WAN Junyu, SHEN Baojian, PAN Anyang, and QIN Jianzhong are the employees of the sponsor of this journal. TAO Guoliang is a member of the editorial office, and an Editorial Board Member of this journal. SHEN Baojian is an Editorial Board Member of this journal. None of them took part in peer review / editorial procedures or decision making of this article.
    LU Longfei and QIN Jianzhong organized the implementation of paper research and experimental analysis. TAO Guoliang, SHEN Baojian, and PAN Anyang completed relevant research work. LU Longfei, TAO Guoliang, QIN Jianzhong, and WAN Junyu completed the writing and revision of their paper. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    秦建中, 申宝剑, 付小东, 等. 中国南方海相优质烃源岩超显微有机岩石学与生排烃潜力[J]. 石油与天然气地质, 2010, 31(6): 826-837.

    QIN Jianzhong, SHEN Baojian, FU Xiaodong, et al. Ultramicroscopic organic petrology and potential of hydrocarbon generation and expulsion of quality marine source rocks in South China[J]. Oil & Gas Geology, 2010, 31(6): 826-837.
    [2]
    秦建中, 腾格尔, 申宝剑, 等. 海相优质烃源岩的超显微有机岩石学特征与岩石学组分分类[J]. 石油实验地质, 2015, 37(6): 671-680. doi: 10.11781/sysydz201506671

    QIN Jianzhong, BORJIN Tenger, SHEN Baojian, et al. Ultramicroscopic organic petrology characteristics and component classification of excellent marine source rocks[J]. Petroleum Geology & Experiment, 2015, 37(6): 671-680. doi: 10.11781/sysydz201506671
    [3]
    秦建中, 潘安阳, 申宝剑. 烃源岩中不溶有机质: 源于生物体的骨壁壳有机大分子[J]. 石油实验地质, 2020, 42(6): 946-956. doi: 10.11781/sysydz202006946

    QIN Jianzhong, PAN Anyang, SHEN Baojian. Insoluble organic matter in source rocks: derived from organic macromolecules in the skeleton, cell wall and shell of organisms[J]. Petroleum Geology & Experiment, 2020, 42(6): 946-956. doi: 10.11781/sysydz202006946
    [4]
    TISSOT B P, WELTE D H. Petroleum formation and occurrence: a new approach to oil and gas exploration[M]. Berlin: Springer, 1978.
    [5]
    王红梅, 马相如, 刘邓, 等. 从生物脂类化合物到沉积有机质的变化及其对正演烃源岩有机质形成的启示[J]. 地球科学(中国地质大学学报), 2007, 32(6): 748-754.

    WANG Hongmei, MA Xiangru, LIU Deng, et al. Chemical variation from biolipids to sedimentary organic matter in modern oceans and its implication to the geobiological evaluation of hydrocarbon source rocks[J]. Earth Science(Journal of China University of Geosciences), 2007, 32(6): 748-754.
    [6]
    VANDENBROUCKE M, LARGEAU C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38(5): 719-833. doi: 10.1016/j.orggeochem.2007.01.001
    [7]
    刘素美, 张经. 沉积物中生物硅分析方法评述[J]. 海洋科学, 2002, 26(2): 23-26.

    LIU Sumei, ZHANG Jing. A study on the measurement of biogenic silica[J]. Marine Sciences, 2002, 26(2): 23-26.
    [8]
    谭智源, 陈木宏. 中国近海的放射虫[M]. 北京: 科学出版社, 1999.

    TAN Zhiyuan, CHEN Muhong. Radiolarians offshore China[M]. Beijing: Science Press, 1999.
    [9]
    宋志刚, 丛文爽, 张天宇, 等. 吉林省石头口门地区早二叠世砂岩碎屑锆石U-Pb年龄及其地质意义[J]. 山东科技大学学报(自然科学版), 2024, 43(1): 41-59.

    SONG Zhigang, CONG Wenshuang, ZHANG Tianyu, et al. Detrital zircon U-Pb ages from Early Permian sandstones in Shitoukoumen area, Jilin Province and their geological significance[J]. Journal of Shandong University of Science and Technology (Natural Science), 2024, 43(1): 41-59.
    [10]
    张晏. 华南寒武纪早期硅质岩中放射虫及共生微体古生物群研究[D]. 武汉: 中国地质大学, 2021.

    ZHANG Yan. Radiolaria and coexisting microfossils from the Early Cambrian deep-water chert in South China[D]. Wuhan: China University of Geosciences, 2021.
    [11]
    雷勇, 冯庆来, 桂碧雯. 安徽巢湖平顶山剖面上二叠统大隆组有机质富集的地球生物学模式[J]. 古地理学报, 2010, 12(2): 202-211.

    LEI Yong, FENG Qinglai, GUI Biwen. Geobiological model for organic enrichment in the Upper Permian Dalong Formation of Pingdingshan section at Chaohu, Anhui[J]. Journal of Palaeogeography, 2010, 12(2): 202-211.
    [12]
    李国山, 王永标, 卢宗盛, 等. 古近纪湖相烃源岩形成的地球生物学过程[J]. 中国科学(D辑: 地球科学), 2014, 44(6): 1206-1217.

    LI Guoshan, WANG Yongbiao, LU Zongsheng, et al. Geobiological processes of the formation of lacustrine source rock in Paleogene[J]. Science China(Series D: Earth Sciences), 2014, 57(5): 976-987.
    [13]
    谢树成, 颜佳新, 杨义, 等. 微生物与沉积岩的协同演化[J]. 沉积学报, 2023, 41(6): 1635-1644.

    XIE Shucheng, YAN Jiaxin, YANG Yi, et al. Coevolution of microorganisms and sedimentary rocks[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1635-1644.
    [14]
    冯庆来, 杜远生, 殷鸿福, 等. 南秦岭勉略蛇绿混杂岩带中放射虫的发现及其意义[J]. 中国科学(D辑: 地球科学), 1996, 26(S1): 78-82.

    FENG Qinglai, DU Yuansheng, YIN Hongfu, et al. Discovery and significance of radiolarians in the Vengliao ophiolite mixed rock belt of the south Qinling mountains[J]. Science in China(Series D: Earth Sciences), 1996, 26(S1): 78-82.
    [15]
    廖志伟, 胡文瑄, 曹剑, 等. 下扬子皖南大隆组黑色岩系发育特征及油气资源潜力初探[J]. 高校地质学报, 2016, 22(1): 138-151.

    LIAO Zhiwei, HU Wenxuan, CAO Jian, et al. A Preliminary investigation of the development and hydrocarbon potential of the black shales in the Upper Permian Dalong Formation, southern Anhui Province in the Lower Yangze region, China[J]. Geological Journal of China Universities, 2016, 22(1): 138-151.
    [16]
    张维. 海绵的分类、演化及其地质意义[J]. 古生物学报, 1991, 30(6): 772-785.

    ZHANG Wei. Classification, evolution and geological significance of fossil sponges[J]. Acta Palaeontologica Sinica, 1991, 30(6): 772-785.
    [17]
    YE Yan, SHEN Jun, FENG Qinglai, et al. Microbial and animal evolution in relation to redox fluctuations in a deep-water setting of South China during the Ediacaran-Cambrian transition (ca. 551-523 Ma)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546: 109672. doi: 10.1016/j.palaeo.2020.109672
    [18]
    卢龙飞, 刘伟新, 魏志红, 等. 四川盆地志留系页岩成岩特征及其对孔隙发育与保存的控制[J]. 沉积学报, 2022, 40(1): 73-87.

    LU Longfei, LIU Weixin, WEI Zhihong, et al. Diagenesis of the Silurian shale, Sichuan Basin: focus on pore development and preservation[J]. Acta Sedimentologica Sinica, 2022, 40(1): 73-87.
    [19]
    管全中, 董大忠, 张华玲, 等. 富有机质页岩生物成因石英的类型及其耦合成储机制: 以四川盆地上奥陶统五峰组—下志留统龙马溪组为例[J]. 石油勘探与开发, 2021, 48(4): 700-709.

    GUAN Quanzhong, DONG Dazhong, ZHANG Hualing, et al. Types of biogenic quartz and its coupling storage mechanism in organic-rich shales: a case study of the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(4): 700-709.
    [20]
    卢龙飞, 秦建中, 申宝剑, 等. 川东南涪陵地区五峰—龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质, 2016, 38(4): 460-465. doi: 10.11781/sysydz201604460

    LU Longfei, QIN Jianzhong, SHEN Baojian, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi formations in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 460-465. doi: 10.11781/sysydz201604460
    [21]
    王仁农. 华北陆台东南部上石盒子组海绵岩的发现[J]. 煤炭学报, 1983(3): 55-64.

    WANG Rennong. Discovery of spongiarite in Upper Shihhotze Formation in south-eastern part of the North China paraplatform[J]. Journal of China Coal Society, 1983(3): 55-64.
    [22]
    廖昱宇, 刘昭远, 何如玥, 等. 厦门沿海的砂壳纤毛虫(原生动物, 纤毛门, 砂壳目)[J]. 水生生物学报, 2018, 42(5): 1027-1036.

    LIAO Yuyu, LIU Zhaoyuan, HE Ruyue, et al. Tindinnid ciliates (Protozoa, ciliophora) from coastal waters off Xiamen[J]. Acta Hydrobiologica Sinica, 2018, 42(5): 1027-1036.
    [23]
    GUILLOU L, CHRÉTIENNOT-DINET M J, MEDLIN L K, et al. Bolidomonas: a new genus with two species belonging to a new algal class, the bolidophyceae (heterokonta)[J]. Journal of Phycology, 1999, 35(2): 368-381. doi: 10.1046/j.1529-8817.1999.3520368.x
    [24]
    张凤廉, 王华建, 张水昌, 等. 元古宙真核藻类演化及环境控制因素[J]. 地质学报, 2021, 95(5): 1334-1355.

    ZHANG Fenglian, WANG Huajian, ZHANG Shuichang, et al. Evolution of Proterozoic eukaryotic algae and environmental constraints[J]. Acta Geologica Sinica, 2021, 95(5): 1334-1355.
    [25]
    秦亚超. 生物硅早期成岩作用研究进展[J]. 地质论评, 2010, 56(1): 89-98.

    QIN Yachao. Research progress in early diagenesis of biogenic silica[J]. Geological Review, 2010, 56(1): 89-98.
    [26]
    PREISIG H R. Systematics and evolution of the cyanobacteria (cyanophyceae)[M]//ESSER K, KADEREIT J W, LVTTGE U, et al. Progress in Botany. Berlin, Heidelberg: Springer, 2000.
    [27]
    KLAVENESS D, GUILLARD R R L. The requirement for silicon in Synura petersenii (chrysophyceae)[J]. Journal of Phycology, 1975, 11(3): 349-355. doi: 10.1111/j.1529-8817.1975.tb02795.x
    [28]
    秦建中, 陶国亮, 腾格尔, 等. 南方海相优质页岩的成烃生物研究[J]. 石油实验地质, 2010, 32(3): 262-269. doi: 10.11781/sysydz201003262

    QIN Jianzhong, TAO Guoliang, TENGER, et al. Hydrocarbon-forming organisms in excellent marine source rocks in South China[J]. Petroleum Geology & Experiment, 2010, 32(3): 262-269. doi: 10.11781/sysydz201003262
    [29]
    HENRIKSEN P, KNIPSCHILDT F, MOESTRUP Ø, et al. Autecology, life history and toxicology of the silicoflagellate Dictyocha speculum (Silicoflagellata, Dictyochophyceae)[J]. Phycologia, 1993, 32(1): 29-39. doi: 10.2216/i0031-8884-32-1-29.1
    [30]
    赵晨旭, 李忠诚, 郭世超, 等. 松辽盆地南部长岭断陷青一段陆相页岩地球化学和沉积环境特征[J]. 特种油气藏, 2023, 30(6): 55-61.

    ZHAO Chenxu, LI Zhongcheng, GUO Shichao, et al. Characteristics of geochemistry and depositional environment of terrestrial shales in the first member of Qingshankou Formation of Changling Fault Depression in the southern Songliao Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(6): 55-61.
    [31]
    张瑜, 黄德将, 张六六, 等. 鄂西宜昌地区寒武系水井沱组页岩生物成因硅特征及其对页岩气富集的影响[J]. 地学前缘, 2023, 30(3): 83-100.

    ZHANG Yu, HUANG Dejiang, ZHANG Liuliu, et al. Biogenic silica of the Lower Cambrian Shuijingtuo Formation in Yichang, western Hubei Province: features and influence on shale gas accumulation[J]. Earth Science Frontiers, 2023, 30(3): 83-100.
    [32]
    李斌, 吉鑫, 彭军, 等. 川东南涪陵地区凉高山组湖相页岩生烃潜力评价[J]. 西南石油大学学报(自然科学版), 2023, 45(6): 43-56.

    LI Bin, JI Xin, PENG Jun, et al. Evaluation of hydrocarbon generation potential of lacustrine shale of Lianggaoshan Formation in Fuling area, southeastern Sichuan[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(6): 43-56.
    [33]
    魏富彬, 刘珠江, 陈斐然, 等. 川东南五峰组—龙马溪组深层、超深层页岩储层特征及其页岩气勘探意义[J]. 石油实验地质, 2023, 45(4): 751-760. doi: 10.11781/sysydz202304751

    WEI Fubin, LIU Zhujiang, CHEN Feiran, et al. Characteristics of the deep and ultra-deep shale reservoirs of the Wufeng-Longmaxi formations in the southeastern Sichuan Basin and the significance of shale gas exploration[J]. Petroleum Geology & Experiment, 2023, 45(4): 751-760. doi: 10.11781/sysydz202304751
    [34]
    杨丽亚, 沈均均, 陈孔全, 等. 基于矿物岩石学和地球化学分析的页岩古环境演化与有机质富集关系: 以川西地区下寒武统筇竹寺组为例[J]. 东北石油大学学报, 2022, 46(5): 40-54.

    YANG Liya, SHEN Junyu, CHEN Kongquan, et al. Relationship between paleoenvironmental evolution and organic matter enrichment of shale of the Lower Cambrian Qiongzhusi Formation in western Sichuan: evidence from mineral petrology and geochemistry[J]. Journal of Northeast Petroleum University, 2022, 46(5): 40-54.
    [35]
    杜贵超, 杨兆林, 尹洪荣, 等. 鄂尔多斯盆地东南部长73段泥页岩储层有机质发育特征及富集模式[J]. 油气地质与采收率, 2022, 29(6): 1-11.

    DU Guichao, YANG Zhaolin, YIN Hongrong, et al. Developmental characteristics of organic matter and its enrichment model in shale reservoirs of Chang73 member in Yanchang Formation of southeast Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6): 1-11.
    [36]
    金值民, 谭秀成, 唐浩, 等. 浅水超覆沉积富有机质细粒沉积物沉积环境与岩石学特征: 以塔里木盆地西北部寒武系玉尔吐斯组为例[J]. 石油勘探与开发, 2020, 47(3): 476-489.

    JIN Zhimin, TAN Xiucheng, TANG Hao, et al. Sedimentary environment and petrological features of organic-rich fine sediments in shallow water overlapping deposits: a case study of Cambrian Yuertus Formation in northwestern Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 476-489.
    [37]
    HURD D C, TAKAHASHI K. On the estimation of minimum mechanical loss during an in situ biogenic silica dissolution experiment[J]. Marine Micropaleontology, 1983, 7(5): 441-447.
    [38]
    卢龙飞, 刘伟新, 俞凌杰, 等. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质, 2020, 42(3): 363-370. doi: 10.11781/sysydz202003363

    LU Longfei, LIU Weixin, YU Lingjie, et al. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. Petroleum Geology & Experiment, 2020, 42(3): 363-370. doi: 10.11781/sysydz202003363
    [39]
    刘时桥, 陈万利, 张木辉, 等. 南海中沙海域表层沉积物浮游有孔虫的分布特征及其指示意义[J]. 海洋地质前沿, 2022, 38(9): 13-25.

    LIU Shiqiao, CHEN Wanli, ZHANG Muhui, et al. Distribution of planktonic foraminifera in surface sediments and its environmental implication in the Zhongsha waters, South China Sea[J]. Marine Geology Frontiers, 2022, 38(9): 13-25.
    [40]
    程济生, 朱金声. 黄海主要经济无脊椎动物摄食特征及其营养层次的研究[J]. 海洋学报, 1997, 19(6): 102-108.

    CHENG Jisheng, ZHU Jinsheng. Feeding characteristics of major economic invertebrates in the Yellow Sea and their trophic levels[J]. Acta Oceanologica Sinica, 1997, 19(6): 102-108.
    [41]
    张富元, 李安春, 林振宏, 等. 深海沉积物分类与命名[J]. 海洋与湖沼, 2006, 37(6): 517-523.

    ZHANG Fuyuan, LI Anchun, LIN Zhenhong, et al. Classification and nomenclature of deep sea sediments[J]. Oceanologia et Limnologia Sinica, 2006, 37(6): 517-523.
    [42]
    沈锡昌. 深海生源碳酸盐沉积物形成研究及其环境意义[J]. 矿物岩石地球化学通讯, 1990, 9(3): 176-178.

    SHEN Xichang. Studies on the formation of deep-sea biogenic carbonate sediments and their environmental significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1990, 9(3): 176-178.
    [43]
    诸晓鸥, 陈晓峰. 虫黄藻在建造珊瑚礁中的作用[J]. 生物学通报, 1993, 28(8): 19.

    ZHU Xiao'ou, CHEN Xiaofeng. The role of zooxanthellae in the construction of coral reefs[J]. Bulletin of Biology, 1993, 28(8): 19.
    [44]
    孙军. 今生颗石藻的有机碳泵和碳酸盐反向泵[J]. 地球科学进展, 2007, 22(12): 1231-1239.

    SUN Jun. Organic carbon pump and carbonate counter pump of living coccolithophorid[J]. Advances in Earth Science, 2007, 22(12): 1231-1239.
    [45]
    秦建中, 申宝剑, 陶国亮, 等. 优质烃源岩成烃生物与生烃能力动态评价[J]. 石油实验地质, 2014, 36(4): 465-472. doi: 10.11781/sysydz201404465

    QIN Jianzhong, SHEN Baojian, TAO Guoliang, et al. Hydrocarbon-forming organisms and dynamic evaluation of hydrocarbon generation capacity in excellent source rocks[J]. Petroleum Geology & Experiment, 2014, 36(4): 465-472. doi: 10.11781/sysydz201404465
    [46]
    卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4): 226-236.

    LU Longfei, QIN Jianzhong, SHEN Baojian, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236.
    [47]
    赵文智, 沈安江, 乔占峰, 等. 白云岩成因类型、识别特征及储集空间成因[J]. 石油勘探与开发, 2018, 45(6): 923-935.

    ZHAO Wenzhi, SHEN Anjiang, QIAO Zhanfeng, et al. Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs[J]. Petroleum Exploration and Development, 2018, 45(6): 923-935.
    [48]
    袁雪君, 张智礼, 孟凡巍, 等. 塔里木盆地YJ1X井中奥陶统一间房组燧石结核中的有机壁微体化石[J]. 微体古生物学报, 2019, 36(1): 57-69.

    YUAN Xuejun, ZHANG Zhili, MENG Fanwei, et al. Organic-walled microfossils in nodular cherts from the Middle Ordovician Yijianfang Formation, well YJ1X, Tarim Basin, China[J]. Acta Micropalaeontologica Sinica, 2019, 36(1): 57-69.
    [49]
    秦建中, 申宝剑, 腾格尔, 等. 不同类型优质烃源岩生排油气模式[J]. 石油实验地质, 2013, 35(2): 179-186. doi: 10.11781/sysydz201302179

    QIN Jianzhong, SHEN Baojian, TENGER, et al. Hydrocarbon generation and expulsion pattern of different types of excellent source rocks[J]. Petroleum Geology & Experiment, 2013, 35(2): 179-186. doi: 10.11781/sysydz201302179
    [50]
    王娟, 金强, 马国政, 等. 高成熟阶段膏岩等盐类物质在烃源岩热解生烃过程中的催化作用[J]. 天然气地球科学, 2009, 20(1): 26-31.

    WANG Juan, JIN Qiang, MA Guozheng, et al. Catalytic action of sulphate evaporates in pyrolytic gas generation of source rocks[J]. Natural Gas Geoscience, 2009, 20(1): 26-31.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (127) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return