Volume 46 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
WU Kai, GAO Juanqin, XIE Guwei, YANG Weiwei, LUO Lirong, LI Shanpeng. Characteristics of Chang 7 shale gas reservoirs in Triassic Yanchang Formation of Ordos Basin and its exploration and development prospects[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1298-1311. doi: 10.11781/sysydz2024061298
Citation: WU Kai, GAO Juanqin, XIE Guwei, YANG Weiwei, LUO Lirong, LI Shanpeng. Characteristics of Chang 7 shale gas reservoirs in Triassic Yanchang Formation of Ordos Basin and its exploration and development prospects[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1298-1311. doi: 10.11781/sysydz2024061298

Characteristics of Chang 7 shale gas reservoirs in Triassic Yanchang Formation of Ordos Basin and its exploration and development prospects

doi: 10.11781/sysydz2024061298
  • Received Date: 2023-10-07
  • Rev Recd Date: 2024-09-28
  • Publish Date: 2024-11-28
  • As the second-largest sedimentary basin in China, the Ordos Basin has enormous potential for oil and gas exploration. The Chang 7 member of the Triassic Yanchang Formation in the basin is extensively distributed with organic-rich source rocks, covering an area of 40 000 to 50 000 km2. These source rocks are characterized by high organic content, with organic matter types mainly being type Ⅰ to Ⅱ1. The Ro values mostly range from 0.9% to 1.2%, indicating that they are in thermal maturity stage. The high content of retained hydrocarbons provides a strong material basis for the development of large-scale shale oil and gas reservoirs. Although the organic-rich mud shale layers in the Chang 73 sub-member have good gas-bearing properties, a systematic analysis of their gas-bearing characteristics is lacking. Using the southern part of the basin's western margin as a case study, multiple analytical methods such as rock geochemistry, organic geochemistry, and isotope analysis were used to identify the geological and geochemical characteristics of the source rock reservoirs in the Chang 7 member. The gas-bearing characteristics and shale gas occurrence states of the Chang 7 member were analyzed, and the shale gas resource potential was preliminarily calculated. The results indicated that the black shale of the Chang 73 sub-member in the study area exhibited good gas-bearing properties, with dissolved shale oil gas being the main component, along with minor amounts of adsorbed gas of kerogen clay minerals and free gas. The average volume of desorption gas was calculated to be 1.91 m3/t. The Chang 73 sub-member contained both shale oil and gas resources, with approximately equivalent quantities. It is recommended to consider both oil and gas development in future exploration and development research. In the central part of the lake basin, where thick black shale of the Chang 7 member occurred, gas content reached 2 m3/t. These reservoirs contained rigid minerals, micropores, and fractures, with high gas abundance and substantial resource potential, making this a favorable area for shale gas exploration. The total shale gas resource of the Chang 7 member was preliminarily estimated to be about 4.25×1012 m3, indicating promising exploration prospects. The favorable exploration areas were identified in the Jiyuan, Gucheng and Zhengning area.

     

  • All authors disclose no relevant conflict of interests.
    WU Kai completed the overall design of the study, summarized experimental data, and conducted comprehensive analysis of data. GAO Juanqin participated in data analysis, paper writing, and revision. XIE Guwei was involved in experimental operations and data analysis related to reservoir geology. YANG Weiwei and LUO Lirong participated in the analysis and summary of the geochemical characteristics of source rocks. LI Shanpeng participated in experimental operations. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    中能传媒能源安全新战略研究院. 中国能源大数据报告(2022)[R]. 北京: 中能传媒能源安全新战略研究院, 2022.

    China Energy Media Research Institute. China energy big data report (2022)[R]Beijing: China Energy Media Research Institute, 2022.
    [2]
    梁涛, 常毓文, 许璐, 等. 北美非常规油气蓬勃发展十大动因及对区域油气供需的影响[J]. 石油学报, 2014, 35(5): 890-900.

    LIANG Tao, CHANG Yuwen, XU Lu, et al. Top ten causes of unconventional oil and gas resources boom in north America and its influence on regional supply and demand[J]. Acta Petrolei Sinica, 2014, 35(5): 890-900.
    [3]
    贾爱林, 何东博, 位云生, 等. 未来十五年中国天然气发展趋势预测[J]. 天然气地球科学, 2021, 32(1): 17-27.

    JIA Ailin, HE Dongbo, WEI Yunsheng, et al. Predictions on natural gas development trend in China for the next fifteen years[J]. Natural Gas Geoscience, 2021, 32(1): 17-27.
    [4]
    罗群, 高阳, 张泽元, 等. 中国与美国致密油形成条件对比研究[J]. 石油实验地质, 2022, 44(2): 199-209. doi: 10.11781/sysydz202202199

    LUO Qun, GAO Yang, ZHANG Zeyuan, et al. A comparative study of geological conditions of tight oils in China and USA[J]. Petroleum Geology & Experiment, 2022, 44(2): 199-209. doi: 10.11781/sysydz202202199
    [5]
    蒋恕, 李醇, 陈国辉, 等. 中美常压页岩气赋存状态及其对可动性与产量的影响: 以彭水和阿巴拉契亚为例[J]. 油气藏评价与开发, 2022, 12(3): 399-406.

    JIANG Shu, LI Chun, CHEN Guohui, et al. Occurrence of normally-pressured shale gas in China and the United States and their effects on mobility and production: a case study of southeast Sichuan Basin and Appalachia Basin[J]. Reservoir Evaluation and Development, 2022, 12(3): 399-406.
    [6]
    邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89(6): 979-1007. doi: 10.3969/j.issn.0001-5717.2015.06.001

    ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6): 979-1007. doi: 10.3969/j.issn.0001-5717.2015.06.001
    [7]
    张金川, 陶佳, 李中明, 等. 中国页岩剖面区域分布及其页岩气地质意义[J]. 油气藏评价与开发, 2022, 12(1): 29-46.

    ZHANG Jinchuan, TAO Jia, LI Zhongming, et al. Regional distribution of field shale outcrop in China and its shale gas significance[J]. Reservoir Evaluation and Development, 2022, 12(1): 29-46.
    [8]
    郭秋麟, 米石云, 张倩, 等. 中国页岩油资源评价方法与资源潜力探讨[J]. 石油实验地质, 2023, 45(3): 402-412. doi: 10.11781/sysydz202303402

    GUO Qiulin, MI Shiyun, ZHANG Qian, et al. Assessment methods and potential of shale oil resources in China[J]. Petroleum Geology & Experiment, 2023, 45(3): 402-412. doi: 10.11781/sysydz202303402
    [9]
    崔英敏, 郭红霞, 陆建峰, 等. 非常规气井产量递减与EUR预测方法评述[J]. 特种油气藏, 2022, 29(6): 119-126. doi: 10.3969/j.issn.1006-6535.2022.06.015

    CUI Yingmin, GUO Hongxia, LU Jianfeng, et al. A Review of unconventional gas well production decline and EUR prediction methods[J]. Special Oil & Gas Reserviors, 2022, 29(6): 119-126. doi: 10.3969/j.issn.1006-6535.2022.06.015
    [10]
    刘春林, 孟令为, 刘可, 等. 基于结构方程的非常规有利区优选方法与体系研究[J]. 特种油气藏, 2023, 30(2): 65-70. doi: 10.3969/j.issn.1006-6535.2023.02.009

    LIU Chunlin, MENG Lingwei, LIU Ke, et al. Study on optimization method and system of unconventional favorable areas based on structural equation[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 65-70. doi: 10.3969/j.issn.1006-6535.2023.02.009
    [11]
    王明筏, 文虎, 倪楷, 等. 四川盆地北部大隆组页岩气地质条件及勘探潜力[J]. 西南石油大学学报(自然科学版), 2023, 45(1): 13-23.

    WANG Mingfa, WEN Hu, NI Kai, et al. Geological conditions and exploration potential of shale gas in Dalong Formation in northern Sichuan Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(1): 13-23.
    [12]
    付金华, 董国栋, 周新平, 等. 鄂尔多斯盆地油气地质研究进展与勘探技术[J]. 中国石油勘探, 2021, 26(3): 19-40.

    FU Jinhua, DONG Guodong, ZHOU Xinping, et al. Research progress of petroleum geology and exploration technology in Ordos Basin[J]. China Petroleum Exploration, 2021, 26(3): 19-40.
    [13]
    YANG Hua, FU Suotang, WEI Xinshan, et al. Geology and exploration of oil and gas in the Ordos Basin[J]. Applied Geophysics, 2004, 1(2): 103-109. doi: 10.1007/s11770-004-0011-3
    [14]
    杜贵超, 杨兆林, 尹洪荣, 等. 鄂尔多斯盆地东南部长73段泥页岩储层有机质发育特征及富集模式[J]. 油气地质与采收率, 2022, 29(6): 1-11.

    DU Guichao, YANG Zhaolin, YIN Hongrong, et al. Developmental characteristics of organic matter and its enrichment model in shale reservoirs of Chang 73 Member in Yanchang Formation of southeast Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6): 1-11.
    [15]
    李浩. 鄂尔多斯盆地古生界气藏成藏模式及优势储层预测[J]. 特种油气藏, 2022, 29(2): 57-63. doi: 10.3969/j.issn.1006-6535.2022.02.008

    LI Hao. Accumulation pattern and favorable reservoir prediction of Paleozoic Gas Reservoirs in Ordos Basin[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 57-63. doi: 10.3969/j.issn.1006-6535.2022.02.008
    [16]
    杨华, 张文正. 论鄂尔多斯盆地长7优质油源岩在低渗透油气成藏富集中的主导作用: 地质地球化学特征[J]. 地球化学, 2005, 34(2): 147-154. doi: 10.3321/j.issn:0379-1726.2005.02.007

    YANG Hua, ZHANG Wenzheng. Leading effect of the seventh member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: geology and geochemistry[J]. Geochimica, 2005, 34(2): 147-154. doi: 10.3321/j.issn:0379-1726.2005.02.007
    [17]
    刘显阳, 李士祥, 郭芪恒, 等. 鄂尔多斯盆地延长组长73亚段泥页岩层系岩石类型特征及勘探意义[J]. 天然气地球科学, 2021, 32(8): 1177-1189.

    LIU Xianyang, LI Shixiang, GUO Qiheng, et al. Characteristics of rock types and exploration significance of the shale strata in the Chang 73 sub-member of Yanchang Formation, ordos Basin[J]. Natural Gas Geoscience, 2021, 32(8): 1177-1189.
    [18]
    付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883.

    FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883.
    [19]
    刘航军. 鄂尔多斯盆地延长组高自然伽马储层成因及测井评价[D]. 西安: 西北大学, 2013.

    LIU Hangjun. The genesis and well logging evaluation of high natural gamma sandstone reservoir in Yanchang Formation in Ordos Basin[D]. Xi'an: Northwest University, 2013.
    [20]
    郑奎, 杨晋玉, 胡晓雪, 等. 胡尖山—姬塬地区长7段油页岩定性定量评价及长9油藏勘探评价[J]. 长江大学学报(自然科学版), 2022, 19(5): 27-36. doi: 10.3969/j.issn.1673-1409.2022.05.004

    ZHENG Kui, YANG Jinyu, HU Xiaoxue, et al. Qualitative and quantitative evaluation of Chang 7 oil shale and exploration evaluation of Chang 9 reservoir in Hujianshan-Jiyuan area[J]. Journal of Yangtze University (Natural Science Edition), 2022, 19(5): 27-36. doi: 10.3969/j.issn.1673-1409.2022.05.004
    [21]
    曹尚, 李树同, 党海龙, 等. 鄂尔多斯盆地东南部长7段页岩孔隙特征及其控制因素[J]. 新疆石油地质, 2022, 43(1): 11-17.

    CAO Shang, LI Shutong, DANG Hailong, et al. Pore Characteristics and controlling factors of Chang 7 shale in southeastern Ordos Basin[J]. Xinjiang Petroleum Geology, 2022, 43(1): 11-17.
    [22]
    钟红利, 卓自敏, 张凤奇, 等. 鄂尔多斯盆地甘泉地区长7页岩油储层非均质性及其控油规律[J]. 特种油气藏, 2023, 30(4): 10-18. doi: 10.3969/j.issn.1006-6535.2023.04.002

    Zhong Hongli, Zhuo Zimin, Zhang Fengqi, et al. Heterogeneity of Chang 7 shale oil reservoir and its oil control law in Ganquan area, Ordos Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 10-18. doi: 10.3969/j.issn.1006-6535.2023.04.002
    [23]
    杨莎莎, 黄旭日, 贾继生, 等. 黄陵地区延长组长6段深水砂岩储层特征分析[J]. 西南石油大学学报(自然科学版), 2022, 44(1): 53-65.

    YANG Shasha, HUANG Xuri, JIA Jisheng, et al. An analysis on the characteristics of deepwater sandstone reservior of Chang 6 member, Yanchang Formation in Huangling area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(1): 53-65.
    [24]
    陈孝红, 李海, 苗凤彬, 等. 中扬子古隆起周缘寒武系页岩气赋存方式与富集机理[J]. 华南地质, 2022, 38(3): 394-407.

    CHEN Xiaohong, LI Hai, MIAO Fengbin, et al. Occurrence model and enrichment mechanism of Cambrian shale gas around Paleo-uplift in the Mid-Yangtze region[J]. South China Geology, 2022, 38(3): 394-407.
    [25]
    蒋恕, 李醇, 陈国辉, 等. 中美常压页岩气赋存状态及其对可动性与产量的影响: 以彭水和阿巴拉契亚为例[J]. 油气藏评价与开发, 2022, 12(3): 399-406.

    JIANG Shu, LI Chun, CHEN Guohui, et al. Occurrence of normally-pressured shale gas in China and the United States and their effects on mobility and production: a case study of southeast Sichuan Basin and Appalachia Basin[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 399-406.
    [26]
    杨钦, 苏思远, 李昂, 等. 孔隙类型对页岩气赋存状态的影响: 以川南长宁地区五峰组—龙马溪组页岩为例[J]. 中国矿业大学学报, 2022, 51(4): 704-717.

    YANG Qin, SU Siyuan, LI Ang, et al. Influence of pore type on the occurrence state of shale gas: taking Wufeng-Longmaxi formation shale in Changning area of southern Sichuan as an example[J]. Journal of China University of Mining & Technology, 2022, 51(4): 704-717.
    [27]
    张晓明, 石万忠, 舒志国, 等. 涪陵地区页岩含气量计算模型及应用[J]. 地球科学, 2017, 42(7): 1157-1168.

    ZHANG Xiaoming, SHI Wanzhong, SHU Zhiguo, et al. Calculation model of shale gas content and its application in Fuling area[J]. Earth Science, 2017, 42(7): 1157-1168.
    [28]
    宋涛涛, 毛小平. 页岩气资源评价中含气量计算方法初探[J]. 中国矿业, 2013, 22(1): 34-36. doi: 10.3969/j.issn.1004-4051.2013.01.009

    SONG Taotao, MAO Xiaoping. Discussion on gas content calculation method of shale gas resource evaluation[J]. China Mining Magazine, 2013, 22(1): 34-36. doi: 10.3969/j.issn.1004-4051.2013.01.009
    [29]
    罗安湘, 刘广林, 刘正鹏, 等. 鄂尔多斯盆地中生界断裂及对油藏的控制研究[J]. 西南石油大学学报(自然科学版), 2023, 45(4): 43-54.

    LUO Anxiang, LIU Guanglin, LIU Zhengpeng, et al. Mesozoic faults and their control on oil reservoirs in Ordos Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4): 43-54.
    [30]
    国家市场监督管理总局, 国家标准化管理委员会. 天然气的组成分析气相色谱法: GB/T 13610-2020[S]. 北京: 中国标准出版社, 2020.

    State Administration for Market Regulation, Standardization Administration. Analysis of natural gas composition-gas chromatography: GB/T 13610-2020[S]. Beijing: Standards Press of China, 2020.
    [31]
    王香增, 郝进, 姜振学, 等. 鄂尔多斯盆地下寺湾地区长7段油溶相页岩气量影响因素及其分布特征[J]. 天然气地球科学, 2015, 26(4): 744-753.

    WANG Xiangzeng, HAO Jin, JIANG Zhenxue, et al. Influencing factors and distributions of the oil dissolved shale gas content of member Chang 7 shale in Xiasiwan area, Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(4): 744-753.
    [32]
    何廷鹏, 栾进华, 胡科, 等. 渝东北城口地区Y1井页岩有机地球化学特征及勘探前景[J]. 岩矿测试, 2018, 37(1): 87-95.

    HE Yanpeng, LUAN Jinhua, HU Ke, et al. Organic geochemical characteristics of the shale from Y1 well in Chengkou area of northeastern Chongqing and exploration prospects[J]. Rock and Mineral Analysis, 2018, 37(1): 87-95.
    [33]
    蒲泊伶, 王凤琴, 王克, 等. 延安地区长7段页岩气成藏富集条件及发育模式[J]. 中国地质, 2023, 50(5): 1285-1298.

    PU Boling, WANG Fengqin, WANG Ke, et al. The enrichment conditions and model of shale gas reservoir in the Chang 7 member of Mesozoic Yanchang Formation in Yan'an, Ordos Basin[J]. Geology in China, 2023, 50(5): 1285-1298.
    [34]
    刚文哲, 高岗, 郝石生, 等. 论乙烷碳同位素在天然气成因类型研究中的应用[J]. 石油实验地质, 1997, 19(2): 164-167. doi: 10.11781/sysydz199702164

    GANG Wenzhe, GAO Gang, HAO Shisheng, et al. Carbon isotope of ethane applied in the analyses of genetic types of natural gas[J]. Petroleum Geology & Experiment, 1997, 19(2): 164-167. doi: 10.11781/sysydz199702164
    [35]
    付永强, 马发明, 曾立新, 等. 页岩气藏储层压裂实验评价关键技术[J]. 天然气工业, 2011, 31(4): 51-54. doi: 10.3787/j.issn.1000-0976.2011.04.012

    FU Yongqiang, MA Faming, ZENG Lixin, et al. Key techniques of experimental evaluation in the fracturing treatment for shale gas reservoirs[J]. Natural Gas Industry, 2011, 31(4): 51-54. doi: 10.3787/j.issn.1000-0976.2011.04.012
    [36]
    RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale[C]//SPE Annual Technical Conference and Exhibition. Denver, USA: Society of Petroleum Engineers, 2008.
    [37]
    宋振响, 陆建林, 周卓明, 等. 常规油气资源评价方法研究进展与发展方向[J]. 中国石油勘探, 2017, 22(3): 21-31. doi: 10.3969/j.issn.1672-7703.2017.03.003

    SONG Zhenxiang, LU Jianlin, ZHOU Zhuoming, et al. Research progress and future development of assessment methods for conventional hydrocarbon resources[J]. China Petroleum Exploration, 2017, 22(3): 21-31. doi: 10.3969/j.issn.1672-7703.2017.03.003
    [38]
    王香增, 张金川, 曹金舟, 等. 陆相页岩气资源评价初探: 以延长直罗—下寺湾区中生界长7段为例[J]. 地学前缘, 2012, 19(2): 192-197.

    WANG Xiangzeng, ZHANG Jinchuan, CAO Jinzhou, et al. A preliminary discussion on evaluation of continental shale gas resources: a case study of Chang 7 of Mesozoic Yanchang Formation in Zhiluo-Xiasiwan area of Yanchang[J]. Earth Science Frontiers, 2012, 19(2): 192-197.
    [39]
    张文正, 杨华, 杨伟伟, 等. 鄂尔多斯盆地延长组长7湖相页岩油地质特征评价[J]. 地球化学, 2015, 44(5): 505-515. doi: 10.3969/j.issn.0379-1726.2015.05.010

    ZHANG Wenzheng, YANG Hua, YANG Weiwei, et al. Assessment of geological characteristics of lacustrine shale oil reservoir in Chang7 Member of Yanchang Formation, Ordos Basin[J]. Geochimica, 2015, 44(5): 505-515. doi: 10.3969/j.issn.0379-1726.2015.05.010
    [40]
    张凤奇, 孙越, 刘思瑶, 等. 构造抬升区泥页岩脆性破裂泄压特征及对页岩油富集的影响: 以延安地区延长组长73亚段为例[J]. 石油实验地质, 2023, 45(5): 936-951. doi: 10.11781/sysydz202305936

    ZHANG Fengqi, SUN Yue, LIU Siyao, et al. Characteristics of pressure relief induced by shale brittle fracture in tectonic uplift area and its influence on shale oil enrichment: a case study of Chang 73 sub-member of Yanchang Formation in Yan'an area[J]. Petroleum Geology & Experiment, 2023, 45(5): 936-951. doi: 10.11781/sysydz202305936
    [41]
    岳宝林, 祝晓林, 刘斌, 等. 气顶边水油藏天然能量开发界面运移规律研究[J]. 天然气与石油, 2021, 39(5): 74-79. doi: 10.3969/j.issn.1006-5539.2021.05.011

    YUE Baolin, ZHU Xiaolin, LIU Bin, et al. Research on migration law of natural energy development interface in gas cap edge water narrow oil ring reservoir[J]. Natural Gas and Oil, 2021, 39(5): 74-79. doi: 10.3969/j.issn.1006-5539.2021.05.011
    [42]
    鹿克峰. 油气同采方式下气顶油藏原油侵入状况的判断与调整[J]. 中国海上油气, 2017, 29(5): 69-74.

    LU Kefeng. Judgment and adjustment of crude oil invasion for oil and gas commingled production in gas cap reservoir[J]. China Offshore Oil and Gas, 2017, 29(5): 69-74.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(8)

    Article Metrics

    Article views (55) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return