Volume 46 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
SUN Di, XIE Xiaomin, QU Yang, XIAO Qilin, LI Li, CHEN Cai, WANG Zhanghu. Geochemical characteristics of Jurassic lacustrine source rocks in Kekeya area, Tarim Basin: implications for paleoenvironments and organic matter enrichment[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1312-1322. doi: 10.11781/sysydz2024061312
Citation: SUN Di, XIE Xiaomin, QU Yang, XIAO Qilin, LI Li, CHEN Cai, WANG Zhanghu. Geochemical characteristics of Jurassic lacustrine source rocks in Kekeya area, Tarim Basin: implications for paleoenvironments and organic matter enrichment[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1312-1322. doi: 10.11781/sysydz2024061312

Geochemical characteristics of Jurassic lacustrine source rocks in Kekeya area, Tarim Basin: implications for paleoenvironments and organic matter enrichment

doi: 10.11781/sysydz2024061312
  • Received Date: 2023-09-28
  • Rev Recd Date: 2024-09-27
  • Publish Date: 2024-11-28
  • To further reveal the development characteristics of Jurassic source rocks in the southwest depression of the Tarim Basin and their paleoenvironments, with the aim of guiding future shale oil exploration and development, the study integrated rock pyrolysis, maceral analysis, inorganic geochemistry, biomarker compounds, and carbon isotope analyzes.It explored the development characteristics and organic matter enrichment patterns of coal-bearing mudstones from the Lower Jurassic Kangsu Formation and mudstones and silty mudstones from the Middle Jurassic Yangye Formation in the Kekeya area of the southwest depression, Tarim Basin. The results showed that the total organic carbon (TOC) content in the source rocks of the Kangsu and Yangye formations was relatively higher, ranging from 1.7% to 63.5% (with an average of 24.4%), and 0.6% to 6.9% (with an average of 2.1%), respectively, indicating source rocks of good to excellent quality. Source rocks from both formations exhibited low maturity, being in the low-maturity to mature stage.In addition, carbon isotope analysis of kerogen, thin section observations, and biomarker compound analysis indicated that the parent material of the organic matter in the coal-bearing mudstones of the Kangsu Formation and the lower section of the Yangye Formation mainly derived from higher terrestrial plants, while the silty mudstones of the upper section of the Yangye Formation contained abundant planktonic algae. During the depositional period of the Kangsu Formation, the paleoclimate was warm and humid, and the water environment was freshwater, with suboxic and slightly oxidizing conditions. In the early depositional stages of the Yangye Formation, the paleoclimate was also hot and humid, and the depositional environment was similar to that of the Kangsu Formation, characterized by freshwater and suboxic conditions. With the gradual rise in lake level in the late depositional period of the Yangye Formation, the paleoenvironment transitioned to a brackish and suboxic environment. The hot and humid climate, coupled with increased salinity, was conducive to the reproduction of planktonic algae and other aquatic organisms, thereby affecting the organic matter supply in silty mudstones of the upper section of the Yangye Formation. Furthermore, the enhancement of water reducibility during this period was also beneficial for the preservation of organic matter. In summary, paleoclimate, paleosalinity, and depositional environment are important factors influencing the organic matter enrichment in the Jurassic lacustrine source rocks of the Kekeya area.

     

  • All authors disclose no relevant conflict of interests.
    The experiments were designed by SUN Di, XIE Xiaomin, and LI Li. The experimental operation was completed by QU Yang, XIAO Qilin, and CHEN Cai. The manuscript was drafted and revised by SUN Di and WANG Zhanghu. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    DERA G, BRIGAUD B, MONNA F, et al. Climatic ups and downs in a disturbed Jurassic world[J]. Geology, 2011, 39(3): 215-218. doi: 10.1130/G31579.1
    [2]
    XU Weimu, RUHL M, JENKYNS H C, et al. Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK)[J]. Earth and Planetary Science Letters, 2018, 484: 396-411. doi: 10.1016/j.epsl.2017.12.037
    [3]
    XIE Wenquan, TAN Jingqiang, WANG Wenhui, et al. Middle Jurassic lacustrine source rocks controlled by an aridification event: a case study in the northern Qaidam Basin (NW China)[J]. International Journal of Coal Geology, 2021, 242: 103779. doi: 10.1016/j.coal.2021.103779
    [4]
    任兵, 廖荣峰, 陈勇, 等. 准噶尔盆地滴南凸起八道湾组煤系沉积环境及层序[J]. 新疆石油地质, 2010, 31(3): 245-247.

    REN Bing, LIAO Rongfeng, CHEN Yong, et al. Coal mesures sedimentary environment and sequence stratigraphy of Badaowan Formation in Dinan swell in Junngar Basin[J]. Xinjiang Petroleum Geology, 2010, 31(3): 245-247.
    [5]
    李登华, 李建忠, 张斌, 等. 四川盆地侏罗系致密油形成条件、资源潜力与甜点区预测[J]. 石油学报, 2017, 38(7): 740-752.

    LI Denghua, LI Jianzhong, ZHANG Bin, et al. Formation condition, resource potential and sweet-spot area prediction of Jurassic tight oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2017, 38(7): 740-752.
    [6]
    赵圣贤, 夏自强, 刘文平, 等. 四川盆地南部泸203井区五峰组—龙马溪组页岩裂缝特征及形成演化[J]. 油气地质与采收率, 2022, 29(5): 28-38.

    ZHAO Shengxian, XIA Ziqiang, LIU Wenping, et al. Fracture characteristics and evolution of Wufeng-Longmaxi Formation shale in Lu203 well area in southern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(5): 28-38.
    [7]
    赵圣贤, 刘勇, 冯江荣, 等. 长宁地区富有机质页岩脆性及与裂缝发育关系[J]. 西南石油大学学报(自然科学版), 2022, 44(4): 1-13.

    ZHAO Shengxian, LIU Yong, FENG Jiangrong, et al. Brittleness characteristics of organic-rich shale and its relationship with fracture development of Changning area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(4): 1-13.
    [8]
    韩珊, 车明光, 苏旺, 等. 四川盆地威远区块页岩气单井产量预测方法及应用[J]. 特种油气藏, 2022, 29(6): 141-149. doi: 10.3969/j.issn.1006-6535.2022.06.018

    HAN Shan, CHE Mingguang, SU Wang, et al. Prediction method and application of single shale gas well production in Weiyuan Block Sichuan Basin[J]. Special Oil & Gas Reserviors, 2022, 29(6): 141-149. doi: 10.3969/j.issn.1006-6535.2022.06.018
    [9]
    胡浩, 赵文韬, 张爱华, 等. 龙马溪组高硅质页岩段定量评价及靶体调整: 以川南地区Z201区块为例[J]. 油气地质与采收率, 2022, 29(4): 25-34.

    HU Hao, ZHAO Wentao, ZHANG Aihua, et al. Quantitativeevaluation and target adjustment of high-silica shale sections in Longmaxi Formation: a case from Block Z201 in southern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 25-34.
    [10]
    白立勋, 高之业, 魏维航, 等. 川南地区龙马溪组中深层与深层页岩孔隙结构对比研究[J]. 特种油气藏, 2023, 30(4): 54-62.

    BAI Lixun, GAO Zhiye, WEI Weihang, et al. A comparative study of the pore structure of deep-medium shale in the Longmaxi Formation of the Southern Sichuan Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 54-62.
    [11]
    廖崇杰, 陈雷, 郑健, 等. 四川盆地长宁西部地区上奥陶统五峰组—下志留统龙马溪组龙一1亚段页岩岩相划分及意义[J]. 石油实验地质, 2022, 44(6): 1037-1047. doi: 10.11781/sysydz2022061037

    LIAO Chongjie, CHEN Lei, ZHENG Jian, et al. Classification of shale lithofacies from Ordovician Wufeng Formation to first section of first member of Silurian Longmaxi Formation, western Changning area, Sichuan Basin, and its significance[J]. Petroleum Geology & Experiment, 2022, 44(6): 1037-1047. doi: 10.11781/sysydz2022061037
    [12]
    王滢, 何嘉, 寇一龙, 等. 长宁地区龙马溪组页岩储层低电阻率成因[J]. 油气地质与采收率, 2022, 29(3): 53-61.

    WANG Ying, HE Jia, KOU Yilong, et al. Causes of low resistivity of Longmaxi Formation shale reservoirs in Changning area[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 53-61.
    [13]
    WANG Zhanghu, TAN Jingqiang, HILTON J, et al. Trace element enrichment mechanisms in black shales during the Early Cambrian (ca. 521-514 Ma), South China[J]. Marine and Petroleum Geology, 2022, 149: 106083. doi: 10.1016/j.marpetgeo.2022.106083
    [14]
    DAI Shifeng, WANG Xibo, ZHOU Yiping, et al. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the Late Permian coals from the Songzao Coalfield, Chongqing, Southwest China[J]. Chemical Geology, 2011, 282(1/2): 29-44.
    [15]
    ZHANG Kun, LIU Rong, DING Wenjing, et al. The influence of Early Cretaceous paleoclimate warming event on sedimentary environment evolution and organic matter sources in Yin'E Basin: evidence from petrology and molecular geochemistry[J]. International Journal of Coal Geology, 2022, 254: 103972.
    [16]
    黄保家, 黄合庭, 吴国瑄, 等. 北部湾盆地始新统湖相富有机质页岩特征及成因机制[J]. 石油学报, 2012, 33(1): 25-31.

    HUANG Baojia, HUANG Heting, WU Guoxuan, et al. Geochemical characteristics and formation mechanism of Eocene lacustrine organic-rich shales in the Beibuwan Basin[J]. Acta Petrolei Sinica, 2012, 33(1): 25-31.
    [17]
    PEARCE C R, COHEN A S, COE A L, et al. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the early Jurassic[J]. Geology, 2008, 36(3): 231-234.
    [18]
    KORTE C, HESSELBO S P, ULLMANN C V, et al. Jurassic climate mode governed by ocean gateway[J]. Nature Communications, 2015, 6: 10015.
    [19]
    钟大康, 朱筱敏, 王贵文, 等. 塔里木盆地喀什凹陷侏罗纪古环境[J]. 古地理学报, 2002, 4(4): 47-54.

    ZHONG Dakang, ZHU Xiaomin, WANG Guiwen, et al. Paleoenvironments of Jurassic of Kashi Sag in Tarim Basin[J]. Journal of Palaeogeography, 2002, 4(4): 47-54.
    [20]
    江德昕, 王永栋, 魏江. 新疆乌恰中侏罗世孢粉植物群及其环境意义[J]. 古地理学报, 2009, 11(2): 205-214.

    JIANG Dexin, WANG Yongdong, WEI Jiang. Palynoflora and its environmental significance of the Middle Jurassic in Wuqia, Xinjiang Autonomous Region[J]. Journal of Palaeogeography, 2009, 11(2): 205-214.
    [21]
    赵志刚, 张雄华, 李晓阳, 等. 新疆且末地区中侏罗世杨叶组孢粉化石的发现及其地质意义[J]. 地质通报, 2019, 38(10): 1603-1614.

    ZHAO Zhigang, ZHANG Xionghua, LI Xiaoyang, et al. The discovery of the sporopollen fossils from the Middle Jurassic Yangye Formation in Qiemo area of Xinjiang and its geological significance[J]. Geological Bulletin of China, 2019, 38(10): 1603-1614.
    [22]
    WU Wei, LIAO Zhiwei, CHEN Honghan, et al. Jurassic terrestrial shale gas potential of the northern Kashi Sag in the Tarim Basin, Northwestern China[J]. Geofluids, 2021, 2021: 5542447.
    [23]
    WANG Jingbin, HE Zhiliang, ZHU Dongya, et al. Geochemical characteristics, depositional environment, and provenance attitude of the Middle Jurassic Yangye Formation lacustrine mudstones in Kashi Sag, south-western Tarim Basin[J]. Geological Journal, 2020: 55(4)2976-2994.
    [24]
    黄文宇, 潘长春, 于双, 等. 塔里木盆地塔西南坳陷柯东构造带甫沙4井原油来源及充注过程[J]. 天然气地球科学, 2022, 33(11): 1836-1847.

    HUANG Wenyu, PAN Changchun, YU Shuang, et al. Oil source and charging process of well FS4 in the Kedong structural belt, Southwest Tarim Depression, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(11): 1836-1847.
    [25]
    侯读杰, 肖中尧, 唐友军, 等. 柯克亚油气田混合来源天然气的地球化学特征[J]. 天然气地球科学, 2003, 14(6): 474-479.

    HOU Dujie, XIAO Zhongyao, TANG Youjun, et al. Geochemical characterization of mixing natural gas in Kekeya Field, Tarim Basin, China[J]. Natural Gas Geoscience, 2003, 14(6): 474-479.
    [26]
    李世臻, 康志宏, 邱海峻, 等. 塔里木盆地西南坳陷油气成藏模式[J]. 中国地质, 2014, 41(2): 387-398.

    LI Shizhen, KANG Zhihong, QIU Haijun, et al. Hydrocarbon accumulation modes of the southwest depression in Tarim Basin[J]. Geology in China, 2014, 41(2): 387-398.
    [27]
    杜世涛, 田继军, 李佳秀, 等. 塔西南中—下侏罗统层序地层特征与聚煤规律[J]. 煤田地质与勘探, 2017, 45(6): 7-13.

    DU Shitao, TIAN Jijun, LI Jiaxiu, et al. Sequence stratigraphy characteristics and coal accumulation law in Mid-Lower Jurassic in southwest Tarim[J]. Coal Geology & Exploration, 2017, 45(6): 7-13.
    [28]
    SEIFERT W K, MOLDOWAN J M. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry[J]. Physics and Chemistry of the Earth, 1980, 12: 229-237.
    [29]
    CARVAJAL-ORTIZ H, GENTZIS T. Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: data quality revisited[J]. International Journal of Coal Geology, 2015, 152: 113-122.
    [30]
    PETERS K E, WALTERS C C, MOLDOWAN J M. The Biomarker Guide[M]. 2nd ed. Cambridge: Cambridge University Press, 2005: 475-625.
    [31]
    FANG Ronghui, LITTKE R, ZIEGER L, et al. Changes of composition and content of tricyclic terpane, hopane, sterane, and aromatic biomarkers throughout the oil window: a detailed study on maturity parameters of Lower Toarcian Posidonia shale of the Hils Syncline, NW Germany[J]. Organic Geochemistry, 2019, 138: 103928.
    [32]
    SEIFERT W K, MOLDOWAN J M. Use of biological markers in petroleum exploration[J]. Methods in Geochemistry and Geophysics, 1986, 24: 261-290.
    [33]
    BRAY E E, EVANS E D. Distribution of n-paraffins as a clue to recognition of source beds[J]. Geochimica et Cosmochimica Acta, 1961, 22(1): 2-15.
    [34]
    VOLKMAN J K. Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways[J]. Organic Geochemistry, 2005, 36(2): 139-159.
    [35]
    ADEGOKE A K, ABDULLAH W H, HAKIMI M H, et al. Geochemical characterization of Fika Formation in the Chad (Bornu) Basin, northeastern Nigeria: implications for depositional environment and tectonic setting[J]. Applied Geochemistry, 2014, 43: 1-12.
    [36]
    CONNAN J, CASSOU A M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels[J]. Geochimica et Cosmochimica Acta, 1980, 44(1): 1-23.
    [37]
    周凯. 柴达木盆地早侏罗世环境—气候变化与火山活动的联系[D]. 北京: 中国矿业大学(北京), 2021: 135.

    ZHOU Kai. Environment and climate changes in Qaidam Basin linked to Early Jurassic volcanism[D]. Beijing: China University of Mining and Technology (Beijing), 2021: 135.
    [38]
    NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
    [39]
    LIU Bo, SONG Yu, ZHU Kai, et al. Mineralogy and element geochemistry of salinized lacustrine organic-rich shale in the Middle Permian Santanghu Basin: implications for paleoenvironment, provenance, tectonic setting and shale oil potential[J]. Marine and Petroleum Geology, 2020, 120: 104569.
    [40]
    PETSCH S T, BERNER R A, EGLINTON T I. A field study of the chemical weathering of ancient sedimentary organic matter[J]. Organic Geochemistry, 2000, 31(5): 475-487.
    [41]
    ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225.
    [42]
    许露露, 温雅茹, 周向辉, 等. 鄂西黄陵背斜南缘下寒武统牛蹄塘组一段古沉积环境演化特征: 以秭地1井为例[J]. 石油实验地质, 2022, 44(3): 456-465. doi: 10.11781/sysydz202203456

    XU Lulu, WEN Yaru, ZHOU Xianghui, et al. Paleo-environment of the first member of Niutitang Formation on the southern margin of Huangling anticline, western Hubei province: a case study of well ZD-1[J]. Petroleum Geology & Experiment, 2022, 44(3): 456-465. doi: 10.11781/sysydz202203456
    [43]
    ALGEO T J, LI Chao. Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta, 2020, 287: 8-26.
    [44]
    DIDYK B M, SIMONEIT B R T, BRASSELL S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 1978, 272(5650): 216-222.
    [45]
    QIAO Jinqi, LUO Qingyong, ZHANG Kuihua, et al. Geochemistry and organic petrography of the Middle Permian Lucaogou alkaline lacustrine oil shale in the southern Junggar Basin, China: implications for formation conditions and organic matter accumulation[J]. International Journal of Coal Geology, 2023, 268: 104198.
    [46]
    WU Zhongrui, LITTKE R, BANIASAD A, et al. Geochemistry and petrology of petroleum source rocks in the Upper Cretaceous Qingshankou Formation, Songliao Basin, NE China[J]. International Journal of Coal Geology, 2023, 270: 104222.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (43) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return