Citation: | HU Xiaodong, LIU Junyi, WANG Tianyu, ZHOU Fujian, LU Xutao, YI Pukang, CHEN Chao. A physics and data dual-driven method for real-time fracturing pressure prediction[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1323-1335. doi: 10.11781/sysydz2024061323 |
[1] |
何玉荣, 宋志超, 张燕明, 等. 机器学习在水力压裂作业中的应用综述[J]. 中国石油大学学报(自然科学版), 2021, 45, (6): 127-135. doi: 10.3969/j.issn.1673-5005.2021.06.015
HE Yurong, SONG Zhichao, ZHANG Yanming, et al. Review on application of machine learning in hydraulic fracturing[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(6): 127-135. doi: 10.3969/j.issn.1673-5005.2021.06.015
|
[2] |
魏海峰. 非均质性页岩水力压裂裂缝扩展形态研究进展[J]. 油气地质与采收率, 2023, 30(4): 156-166.
WEI Haifeng. Research progress on fracture propagation patterns of hydraulic fracturing in heterogeneous shale[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(4): 156-166.
|
[3] |
李鹏飞. 四川盆地页岩气立体开发缝控压裂技术应用[J]. 特种油气藏, 2023, 30(2): 168-174. doi: 10.3969/j.issn.1006-6535.2023.02.024
LI Pengfei. Application of fracture-controlled fracturing technology in tridimensional development of shale gas in Sichuan Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 168-174. doi: 10.3969/j.issn.1006-6535.2023.02.024
|
[4] |
王强, 赵金洲, 胡永全, 等. 页岩水力裂缝网络形态及激活机制研究[J]. 西南石油大学学报(自然科学版), 2022, 44(6): 71-86.
WANG Qiang, ZHAO Jinzhou, HU Yongquan, et al. Investigation on the morphology and activation mechanism of hydraulic fracture network in shale[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(6): 71-86.
|
[5] |
刘建峰. 水平井分段压裂生产剖面测试技术进展与展望[J]. 特种油气藏, 2022, 29(5): 1-8. doi: 10.3969/j.issn.1006-6535.2022.05.001
LIU Jianfeng. Progress and prospect of production profile testing technology for staged fracturing in horizontal wells[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 1-8. doi: 10.3969/j.issn.1006-6535.2022.05.001
|
[6] |
蒲草, 王玲, 熊荣园, 等. 水力压裂施工曲线的应用研究: 以Z油田压裂施工为例[J]. 广州化工, 2023, 51(2): 211-213.
PU Cao, WANG Ling, XIONG Rongyuan, et al. Applied study on hydraulic fracturing construction curves: taking fracturing construction in Z oilfield as an example[J]. Guangzhou Chemical Industry, 2023, 51(2): 211-213.
|
[7] |
李春雷, 曹小朋, 张林凤, 等. 基于机器学习算法的水驱储层相渗曲线仿真预测[J]. 油气地质与采收率, 2022, 29(6): 138-142.
LI Chunlei, CAO Xiaopeng, ZHANG Linfeng, et al. Simulation and prediction of water-flooding reservoir relative permeability curve based on machine learning[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6): 138-142.
|
[8] |
贾蕊, 袁泉, 汤欣, 等. 广义气水混驱特征曲线的建立及应用[J]. 新疆石油地质, 2023, 44(5): 562-571.
JIA Rui, YUAN Quan, TANG Xin, et al. Establishment and application of generalized characteristic curves of gas-water miscible flooding[J]. Xinjiang Petroleum Geology, 2023, 44(5): 562-571.
|
[9] |
陈元千, 徐良. Arps双曲线递减模型的多解性和不确定性[J]. 油气地质与采收率, 2022, 29(3): 80-84.
CHEN Yuanqian, XU Liang. Multi-solution and uncertainty of Arps'hyperbolic exponential decline model[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 80-84.
|
[10] |
EL SGHER M, AMINIAN K, AMERI S. Evaluation of hydraulic fracturing treatment with microseismic data analysis in a marcellus shale horizontal well[C]//SPE Western Regional Meeting. [s. l. ]: SPE, 2021.
|
[11] |
郭建春, 路千里, 何佑伟. 页岩气压裂的几个关键问题与探索[J]. 天然气工业2022, 42(8): 148-161. doi: 10.3787/j.issn.1000-0976.2022.08.012
GUO Jianchun, LU Qianli, HE Youwei. Key issues and explorations in shale gas fracturing[J]. Natural Gas Industry, 2022, 42(8): 148-161. doi: 10.3787/j.issn.1000-0976.2022.08.012
|
[12] |
赵金洲, 付永强, 王振华, 等页岩气水平井缝网压裂施工压力曲线的诊断识别方法[J]. 天然气工业, 2022, 42(2): 11-19. doi: 10.3787/j.issn.1000-0976.2022.02.002
ZHAO Jinzhou, FU Yongqiang, WANG Zhenhua, et al. Study on diagnosis model of shale gas fracture network fracturing operation pressure curves[J]. Natural Gas Industry, 2022, 42(2): 11-19. doi: 10.3787/j.issn.1000-0976.2022.02.002
|
[13] |
汪海阁, 高博, 郑有成, 等. 机器学习在钻柱振动识别与预测中的研究进展[J]. 天然气工业, 2024, 44(1): 149-158. doi: 10.3787/j.issn.1000-0976.2024.01.014
WANG Haige, GAO Bo, ZHEN Youcheng, et al. Research progress of machine learning in drill string vibration recognition and prediction[J]. Natural Gas Industry, 2024, 44(1): 149-158. doi: 10.3787/j.issn.1000-0976.2024.01.014
|
[14] |
巫芙蓉, 闫媛媛, 尹陈. 页岩气微地震压裂实时监测技术: 以四川盆地蜀南地区为例[J]. 天然气工业, 2016, 36(11): 46-50. doi: 10.3787/j.issn.1000-0976.2016.11.006
WU Furong, YAN Yuanyuan, YIN Chen. Real-time microseismic monitoring technology for hydraulic fracturing in shale gas reservoirs: a case study from the southern Sichuan Basin[J]. Natural Gas Industry, 2016, 36(11): 46-50. doi: 10.3787/j.issn.1000-0976.2016.11.006
|
[15] |
PIRAYESH E, SOLIMAN M Y, RAFIEE M, et al. A new method to interpret fracturing pressure: application to frac pack[J]. SPE Journal, 2015, 20(3): 508-517. doi: 10.2118/166132-PA
|
[16] |
叶燊, 乔江美, 李同春. 注水压力和溶洞内压对水力裂缝扩展影响模拟研究[J]. 油气藏评价与开发, 2022, 12(2): 382-390.
YE Shen, QIAO Jiangmei, LI Tongchun. Numerical simulation of influence of water injection pressure and cave internal pressure on fracture propagation[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(2): 382-390.
|
[17] |
刘向君, 王小军, 赵保伟, 等. 砂砾岩储集层水力压裂裂缝扩展规律与可压性评价[J]. 新疆石油地质, 2023, 44(2): 169-177.
LIU Xiangjun, WANG Xiaojun, ZHAO Baowei, et al. Propagation of hydraulic fractures and fracability evaluation of sandy conglomerate reservoirs[J]. Xinjiang Petroleum Geology, 2023, 44(2): 169-177.
|
[18] |
闵超, 张馨慧, 杨兆中, 等. 基于CBFS-CV算法的煤层气井压裂效果主控因素识别[J]. 油气地质与采收率, 2022, 29(1): 168-174.
MIN Chao, ZHANG Xinhui, YANG Zhaozhong, et al. Identification of main controlling factors of fracturing performance in coalbed methane wells based on CBFS-CV algorithm[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 168-174.
|
[19] |
刘红磊, 徐胜强, 朱碧蔚, 等. 盐间页岩油体积压裂技术研究与实践[J]. 特种油气藏, 2022, 29(2): 149-156. doi: 10.3969/j.issn.1006-6535.2022.02.022
LIU Honglei, XU Shengqiang, ZHU Biwei, et al. Research and practice of SRV fracturing technology for inter-salt shale oil[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 149-156. doi: 10.3969/j.issn.1006-6535.2022.02.022
|
[20] |
刘子军. 基于Pearson相关系数的低渗透砂岩油藏重复压裂井优选方法[J]. 油气地质与采收率, 2022, 29(2): 140-144.
LIU Zijun. Method for selecting repeated fracturing wells in low-permeability sandstone reservoirs based on Pearson correlation coefficient[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2): 140-144.
|
[21] |
刘合, 张广明, 张劲, 等. 油井水力压裂摩阻计算和井口压力预测[C]//第十一次全国岩石力学与工程学术大会. 北京: 科学出版社, 2010: 7.
LIU He, ZHANG Guangming, ZHANG Jin, et al. Friction loss calculation and surface pressure prediction in oil well hydraulic fracturing[C]//The 11th National Conference on Rock Mechanics and Engineering. Beijing: Science Press, 2010: 7.
|
[22] |
刘依达. 裸眼水平井分段压裂施工中井口压力预测[J]. 长江大学学报(自科版), 2014, 11(8): 98-100. doi: 10.3969/j.issn.1673-1409.2014.08.048
LIU Yida. Prediction of wellhead pressure in staged fracturing of open hole horizontal wells[J]. Journal of Yangtze University (Nature Science Edition), 2014, 11(8): 98-100. doi: 10.3969/j.issn.1673-1409.2014.08.048
|
[23] |
LIANG Haibo, ZOU Jialing, KHAN M J, et al. An sand plug of fracturing intelligent early warning model embedded in remote monitoring system[J]. IEEE Access, 2019, 7: 47944-47954. doi: 10.1109/ACCESS.2019.2909647
|
[24] |
BEN Yuxing, PERROTTE M, EZZATABADIPOUR M, et al. Real-time hydraulic fracturing pressure prediction with machine learning[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition. The Woodlands: SPE, 2020.
|
[25] |
胡瑾秋, 张尚尚, 曾然, 等. 基于深度学习的页岩气压裂砂堵事故预警方法[J]. 中国安全科学学报, 2020, 30(9): 108-114.
HU Jinqiu, ZHANG Shangshang, ZENG Ran, et al. Early warning method for sand plugging accidents in shale gas fracturing based on deep leaning[J]. China Safety Science Journal, 2020, 30(9): 108-114.
|
[26] |
ZHANG Chengkai, ZHANG Rui, ZHU Zhaopeng, et al. Bottom hole pressure prediction based on hybrid neural networks and Bayesian optimization[J]. Petroleum Science, 2023, 20(6): 3712-3722. doi: 10.1016/j.petsci.2023.07.009
|
[27] |
YUAN Bin, ZHAO Mingze, MENG Siwei, et al. Intelligent identification and real-time warning method of diverse complex events in horizontal well fracturing[J]. Petroleum Exploration and Development, 2023, 50(6): 1487-1496. doi: 10.1016/S1876-3804(24)60482-9
|
[28] |
HU X, WU K, SONG X, et al. Development of a new mathematical model to quantitatively evaluate equilibrium height of proppant bed in hydraulic fractures for slickwater treatment[J]. SPE Journal, 2018, 23(6): 2158-2174. doi: 10.2118/191360-PA
|
[29] |
曾庆田, 吕珍珍, 石永奎, 等. 基于Prophet+LSTM模型的煤矿井下工作面矿压预测研究[J]. 煤炭科学技术, 2021, 49(7): 16-23.
ZENG Qingtian, LÜ Zhenzhen, SHI Yongkui, et al. Research on mine pressure prediction of coal mine underground face based on prophet and LSTM model[J]. Coal science and technology, 2021, 49(7): 16-23.
|
[30] |
刘庆. 水平井体积压裂井底净压力计算及分析[D]. 中国石油大学(北京), 2017.
LIU Qing. Calculation and analysis of net bottomhole pressure in horizontal well volumetric fracturing[D]. China University of Petroleum (Beijing), 2017.
|
[31] |
ECONOMIDES M J, NOLTE K G. Reservoir Stimulation[M]. New York: Wiley, 2000.
|
[32] |
李晓瑜. 基于小波分析的扫描电镜图像处理[J]. 实验室研究与探索, 2022, 41(5): 26-29.
LI Xiaoyu. Scanning electron microscope image processing based on wavelet analysis[J]. Laboratory research and exploration, 2022, 41(5): 26-29.
|
[33] |
PAN W, ZHANG N, ZENG F, et al. Time-frequency domain characteristics on the dynamic response of a moored floater under a freak wave by wavelet analysis[J]. International Journal of Offshore and Polar Engineering, 2021, 31(2): 160. doi: 10.17736/ijope.2021.mk72
|
[34] |
REN Q, ZHANG H, AZEVEDO L, et al. Reconstruction of missing well-logs using facies-informed discrete wavelet transform and time series regression[J]. SPE Journal, 2023, 28(6): 2946-2963. doi: 10.2118/217425-PA
|