Citation: | SHUI Leilei, QIU Kunqi, WAN Huan, GONG Shengli, LU Wenkai, WEI Wenyan, WANG Yonghao, YU Yongzhao. Intelligent identification of Cenozoic spore and pollen fossils in Bohai Sea area[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1362-1370. doi: 10.11781/sysydz2024061362 |
[1] |
温宏雷, 杨海风, 杨波, 等. 渤海海域莱北低凸起新近系岩性油藏成藏模式及勘探实践[J]. 石油实验地质, 2022, 44(1): 102-111. doi: 10.11781/sysydz202201102
WEN Honglei, YANG Haifeng, YANG Bo, et al. Exploration advances and accumulation model for Neocene lithological reservoirs in Laibei Low Uplift, Bohai Sea area[J]. Petroleum Geology & Experiment, 2022, 44(1): 102-111. doi: 10.11781/sysydz202201102
|
[2] |
健庄. 微体古生物的自动识别[J]. 西安电子科技大学学报, 1989, 16(1): 17-25.
LIU Jianzhuang. Automatic recognition of microfossils[J]. Journal of Xidian University, 1989, 16(1): 17-25.
|
[3] |
王益锋, 张逸昆. 人工智能原理在古生物化石归类中的应用[J]. 古生物学报, 1988, 27(4): 521-524.
WANG Yifeng, ZHANG Yikun. Application of artificial intelligence principle to paleontologic taxonomy[J]. Acta Palaeontologica Sinica, 1988, 27(4): 521-524.
|
[4] |
赵贤淑, 张俊岭, 陈德岭. 多元统计分析在古生物化石分类鉴定中的应用[J]. 西安矿业学院学报, 1996, 16(2): 183-185.
ZHAO Xianshu, ZHANG Junling, CHEN Deling. Application of multivate statistics analysis to classification and identification of paleontologic fossils[J]. Journal of Xi'an Mining Institute, 1996, 16(2): 183-185.
|
[5] |
RODRIGUEZ-DAMIAN M, CERNADAS E, FORMELLA A, et al. Automatic detection and classification of grains of pollen based on shape and texture[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2006, 36(4): 531-542. doi: 10.1109/TSMCC.2005.855426
|
[6] |
TRAVIESO C M, BRICEÑO J C, TICAY-RIVAS J R, et al. Pollen classification based on contour features[C]//201115th IEEE International Conference on Intelligent Engineering Systems. Poprad, Slovakia: IEEE, 2011: 17-21.
|
[7] |
CHEN Ying, HUANG Yiqi, ZHANG Zizhao, et al. Plant image recognition with deep learning: a review[J]. Computers and Electronics in Agriculture, 2023, 212: 108072. doi: 10.1016/j.compag.2023.108072
|
[8] |
杨勇. 胜利油田勘探开发大数据及人工智能技术应用进展[J]. 油气地质与采收率, 2022, 29(1): 1-10.
YANG Yong. Application progress of big data & AI technologies in exploration and development of Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 1-10.
|
[9] |
李佳航, 李讳, 刘向君, 等. 基于岩石薄片图像的海陆过渡相页岩纹层识别方法及应用[J]. 特种油气藏, 2023, 30(4): 44-53. doi: 10.3969/j.issn.1006-6535.2023.04.006
LI Jiahang, LI Wei, LIU Xiangjun, et al. Identification method and application of marine-continental transitional shale laminae based on rock thin section image. [J]. Special Oil &Gas Reservoirs, 2023, 30(4): 44-53. doi: 10.3969/j.issn.1006-6535.2023.04.006
|
[10] |
孙龙祥, 韩宏伟, 冯德永, 等. 基于人工智能的测井地层划分方法研究现状与展望[J]. 油气地质与采收率, 2023, 30(3): 49-58.
SUN Longxiang, HAN Hongwei, FENG Deyong, et al. Research status and outlook of logging stratigraphic division methods based on artificial intelligence[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(3): 49-58.
|
[11] |
安玉钏, 陈雁, 黄玉楠, 等. 基于深度学习的介形类化石层次化识别[J]. 地质论评, 2022, 68(2): 673-684.
AN Yuchuan, CHEN Yan, HUANG Yulan, et al. Hierarchical recognition of ostracod fossils based on deep learning[J]. Geological Review, 2022, 68(2): 673-684.
|
[12] |
徐卉清, 樊隽轩, 杨娇, 等. 应用卷积神经网络进行化石图像分类[C]//中国古生物学会第十二次全国会员代表大会暨第29届学术年会论文摘要集. 郑州: 中国古生物学会, 2018.
XU Huiqing, FAN Junxuan, YANG Jiao, et al. Application of convolution neural network in fossils image classification[C]//Abstracts of Papers of the Twelfth National Congress of the Chinese Society of Paleontology and the 29th Annual Academic Conference. Zhengzhou: Palaeontological Society of China, 2018.
|
[13] |
张涛, 雷丹博, 王宾, 等. 陕南寒武系底部宽川铺组微体化石人工智能识别[J]. 古生物学报, 2019, 58(2): 141-151.
ZHANG Tao, LEI Danbo, WANG Bin, et al. Artificial intelligence identification of microfossils from the Lower Cambrian Kuchuanpu Formation in southern Shaanxi, China[J]. Acta Palaeontologica Sinica, 2019, 58(2): 141-151.
|
[14] |
KONG Shu, PUNYASENA S, FOWLKES C. Spatially aware dictionary learning and coding for fossil pollen identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Las Vegas, NV, USA: IEEE, 2016: 1-10.
|
[15] |
谢永华, 赵贤国, 王琢. 基于突变点几何约束直方图的花粉图像识别[J]. 计算机仿真, 2018, 35(12): 411-415.
XIE Yonghua, ZHAO Xianguo, WANG Zhuo. Pollen image recognition based on geometric constraint histogram of mutation points[J]. Computer Simulation, 2018, 35(12): 411-415.
|
[16] |
OLSSON O, KARLSSON M, PERSSON A S, et al. Efficient, automated and robust pollen analysis using deep learning[J]. Methods in Ecology and Evolution, 2021, 12(5): 850-862. doi: 10.1111/2041-210X.13575
|
[17] |
THEUERKAUF M, SIRADZE N, GILLERT A. A trainable object finder, selector and identifier for pollen, spores and other things: a step towards automated pollen recognition in lake sediments[J]. The Holocene, 2024, 34(3): 297-305. doi: 10.1177/09596836231211876
|
[18] |
乔小燕. 赤潮藻显微图像自动识别方法[J]. 山东大学学报(工学版), 2016, 46(3): 1-6.
QIAO Xiaoyan. Automatic recognition method of microscopic image of harmful algae[J]. Journal of Shandong University(Engineering Science), 2016, 46(3): 1-6.
|
[19] |
乔小燕. 基于自适应形态学的甲藻显微图像顶刺提取[J]. 中国海洋大学学报, 2013, 43(4): 117-122.
QIAO Xiaoyan. Pyrrophyta spine extraction based on adaptive morphology[J]. Periodical of Ocean University of China, 2013, 43(4): 117-122.
|
[20] |
夏菁, 白志强, 王宝鹏, 等. 牙形石数字图像采集与图像增强方法研究[J]. 古生物学报, 2014, 53(3): 392-399.
XIA Jing, BAI Zhiqiang, WANG Baopeng, et al. Conodont digital image acquisition and the method of image enhancement[J]. Acta Palaeontologica Sinica, 2014, 53(3): 392-399.
|
[21] |
杨寿勇, 张海阳, 李成, 等. 基于卷积神经网络模型的微藻种类识别[J]. 环境科学与技术, 2020, 43(S2): 158-164.
YANG Shouyong, ZHANG Haiyang, LI Cheng, et al. Recognition of microalgae species based on convolutional neural network model[J]. Environmental Science & Technology, 2020, 43(S2): 158-164.
|
[22] |
徐长贵. 渤海湾盆地天然气勘探新进展、未来方向与挑战[J]. 天然气工业, 2024, 44(1): 72-85.
XU Changgui. Progress, future direction, and challenges of natural gas exploration in the Bohai Bay Basin[J]. Natural Gas Industry, 2024, 44(1): 72-85.
|
[23] |
GONZALEZ R C, WOODS R E. 数字图像处理[M]. 2版. 阮秋琦, 阮宇智, 译. 北京: 电子工业出版社, 2007.
GONZALEZ R C, WOODS R E. Digital image processing[M]. 2nd ed. RUAN Qiuqi, RUAN Yuzhi, trans. Beijing: Electronic Industry Press, 2007.
|
[24] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016.
|
[25] |
REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 6517-6525.
|
[26] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J/OL]. arXiv preprint arXiv: 2004.10934, 2020. https://arxiv.org/abs/2004.10934.
|
[27] |
余晓露, 叶恺, 杜崇娇, 等. 基于卷积神经网络的碳酸盐岩生物化石显微图像识别[J]. 石油实验地质, 2021, 43(5): 880-885. doi: 10.11781/sysydz202105880
YU Xiaolu, YE Kai, DU Chongjiao, et al. Microscopic recognition of micro fossils in carbonate rocks based on convolutional neural network[J]. Petroleum Geology & Experiment, 2021, 43(5): 880-885. doi: 10.11781/sysydz202105880
|
[28] |
奚园园, 王永茂, 芦碧波, 等. 基于深度学习单阶段算法的虫筳类化石检测[J]. 地球科学(中国地质大学学报), 2024, 49(3): 1154-1164.
XI Yuanyuan, WANG Yongmao, LU Bibo, et al. Fusulinid detection based on deep learning single-stage algorithm[J]. Earth Science(Journal of China University of Geosciences), 2024, 49(3): 1154-1164.
|
[29] |
余晓露, 李龙龙, 蒋宏, 等. 融合图像处理与深度学习的亮晶颗粒灰岩岩相学分析应用[J]. 石油实验地质, 2023, 45(5): 1026-1038. doi: 10.11781/sysydz2023051026
YU Xiaolu, LI Longlong, JIANG Hong, et al. Application of sparry grain limestone petrographic analysis combining image processing and deep learning[J]. Petroleum Geology & Experiment, 2023, 45(5): 1026-1038. doi: 10.11781/sysydz2023051026
|
[30] |
李少华, 史敬华, 于金彪, 等. 基于单一图像生成对抗神经网络方法在沉积相建模中的应用[J]. 油气地质与采收率, 2022, 29(1): 37-45.
LI Shaohua, SHI Jinghua, YU JinBiao, et al. Application of SinGAN method in sedimentary facies modeling[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 37-45.
|
[31] |
YANG Guanhao, FENG Wei, JIN Jintao, et al. Face mask recognition system with YOLOV5 based on image recognition[C]//2020 IEEE 6th International Conference on Computer and Communications. Chengdu, China: IEEE, 2020.
|
[32] |
ZHU Yi, SAPRA K, REDA F A, et al. Improving semantic segmentation via video propagation and label relaxation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 8856-8865.
|
[33] |
韩肖, 马祥. 基于二进制标签松弛模型的遮挡人脸识别[J]. 计算机技术与发展, 2022, 32(1): 1-6.
HAN Xiao, MA Xiang. Occlusion face recognition based on binary label relaxation[J]. Computer Technology and Development, 2022, 32(1): 1-6.
|
[34] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 4700-4708.
|