Volume 46 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
SHUI Leilei, QIU Kunqi, WAN Huan, GONG Shengli, LU Wenkai, WEI Wenyan, WANG Yonghao, YU Yongzhao. Intelligent identification of Cenozoic spore and pollen fossils in Bohai Sea area[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1362-1370. doi: 10.11781/sysydz2024061362
Citation: SHUI Leilei, QIU Kunqi, WAN Huan, GONG Shengli, LU Wenkai, WEI Wenyan, WANG Yonghao, YU Yongzhao. Intelligent identification of Cenozoic spore and pollen fossils in Bohai Sea area[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(6): 1362-1370. doi: 10.11781/sysydz2024061362

Intelligent identification of Cenozoic spore and pollen fossils in Bohai Sea area

doi: 10.11781/sysydz2024061362
  • Received Date: 2024-05-15
  • Rev Recd Date: 2024-10-16
  • Publish Date: 2024-11-28
  • The identification of paleontological fossil types and their distribution provides important information for geochronological, paleoenvironmental studies, and oil and gas exploration. However, traditional fossil identification methods are time-consuming, labor-intensive, and highly dependent on manual efforts, making it difficult to meet the current demand for rapid exploration and evaluation. Given the limited number of spore and pollen fossil images, the complex classification of taxa, and the specific taxonomy of family, genus, and species, this research focused on improving the automation for fossil image processing, image screening, object detection, and classification. By utilizing techniques such as deep learning for object detection and label smoothing, the efficiency of fossil screening and spore and pollen fossil classification was significantly enhanced. Taking the identification of the Cenozoic spore and pollen fossils from the Bohai Sea shallow area as a case study, a set of intelligent identification methods was developed using neural networks such as YOLOv5 and DenseNet, with an average identification accuracy of 94%, basically meeting the practical accuracy requirements for fossil identification in production. The system could assist in the manual identification of paleontological fossils. By effectively combining various deep learning techniques with specialized knowledge in paleontology, the generalization ability and recognition accuracy of the identification model were improved from both data and model perspectives. Its successful application demonstrates the feasibility of artificial intelligence in the traditional field of paleontological fossil identification, reducing time and labor costs while providing accurate results.

     

  • All authors disclose no relevant conflict of interests.
    SHUI Leilei, GONG Shengli, WAN Huan, and LU Wenkai were responsible for the experimental design. QIU Kunqi, WEI Wenyan, WANG Yonghao, and YU Yongzhao conducted the experiments. SHUI Leilei, QIU Kunqi, WEI Wenyan, and WANG Yonghao participated in the writing and revision of the manuscript. All authors have read the last version of the paper and consented to its submission.
  • loading
  • [1]
    温宏雷, 杨海风, 杨波, 等. 渤海海域莱北低凸起新近系岩性油藏成藏模式及勘探实践[J]. 石油实验地质, 2022, 44(1): 102-111. doi: 10.11781/sysydz202201102

    WEN Honglei, YANG Haifeng, YANG Bo, et al. Exploration advances and accumulation model for Neocene lithological reservoirs in Laibei Low Uplift, Bohai Sea area[J]. Petroleum Geology & Experiment, 2022, 44(1): 102-111. doi: 10.11781/sysydz202201102
    [2]
    健庄. 微体古生物的自动识别[J]. 西安电子科技大学学报, 1989, 16(1): 17-25.

    LIU Jianzhuang. Automatic recognition of microfossils[J]. Journal of Xidian University, 1989, 16(1): 17-25.
    [3]
    王益锋, 张逸昆. 人工智能原理在古生物化石归类中的应用[J]. 古生物学报, 1988, 27(4): 521-524.

    WANG Yifeng, ZHANG Yikun. Application of artificial intelligence principle to paleontologic taxonomy[J]. Acta Palaeontologica Sinica, 1988, 27(4): 521-524.
    [4]
    赵贤淑, 张俊岭, 陈德岭. 多元统计分析在古生物化石分类鉴定中的应用[J]. 西安矿业学院学报, 1996, 16(2): 183-185.

    ZHAO Xianshu, ZHANG Junling, CHEN Deling. Application of multivate statistics analysis to classification and identification of paleontologic fossils[J]. Journal of Xi'an Mining Institute, 1996, 16(2): 183-185.
    [5]
    RODRIGUEZ-DAMIAN M, CERNADAS E, FORMELLA A, et al. Automatic detection and classification of grains of pollen based on shape and texture[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2006, 36(4): 531-542. doi: 10.1109/TSMCC.2005.855426
    [6]
    TRAVIESO C M, BRICEÑO J C, TICAY-RIVAS J R, et al. Pollen classification based on contour features[C]//201115th IEEE International Conference on Intelligent Engineering Systems. Poprad, Slovakia: IEEE, 2011: 17-21.
    [7]
    CHEN Ying, HUANG Yiqi, ZHANG Zizhao, et al. Plant image recognition with deep learning: a review[J]. Computers and Electronics in Agriculture, 2023, 212: 108072. doi: 10.1016/j.compag.2023.108072
    [8]
    杨勇. 胜利油田勘探开发大数据及人工智能技术应用进展[J]. 油气地质与采收率, 2022, 29(1): 1-10.

    YANG Yong. Application progress of big data & AI technologies in exploration and development of Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 1-10.
    [9]
    李佳航, 李讳, 刘向君, 等. 基于岩石薄片图像的海陆过渡相页岩纹层识别方法及应用[J]. 特种油气藏, 2023, 30(4): 44-53. doi: 10.3969/j.issn.1006-6535.2023.04.006

    LI Jiahang, LI Wei, LIU Xiangjun, et al. Identification method and application of marine-continental transitional shale laminae based on rock thin section image. [J]. Special Oil &Gas Reservoirs, 2023, 30(4): 44-53. doi: 10.3969/j.issn.1006-6535.2023.04.006
    [10]
    孙龙祥, 韩宏伟, 冯德永, 等. 基于人工智能的测井地层划分方法研究现状与展望[J]. 油气地质与采收率, 2023, 30(3): 49-58.

    SUN Longxiang, HAN Hongwei, FENG Deyong, et al. Research status and outlook of logging stratigraphic division methods based on artificial intelligence[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(3): 49-58.
    [11]
    安玉钏, 陈雁, 黄玉楠, 等. 基于深度学习的介形类化石层次化识别[J]. 地质论评, 2022, 68(2): 673-684.

    AN Yuchuan, CHEN Yan, HUANG Yulan, et al. Hierarchical recognition of ostracod fossils based on deep learning[J]. Geological Review, 2022, 68(2): 673-684.
    [12]
    徐卉清, 樊隽轩, 杨娇, 等. 应用卷积神经网络进行化石图像分类[C]//中国古生物学会第十二次全国会员代表大会暨第29届学术年会论文摘要集. 郑州: 中国古生物学会, 2018.

    XU Huiqing, FAN Junxuan, YANG Jiao, et al. Application of convolution neural network in fossils image classification[C]//Abstracts of Papers of the Twelfth National Congress of the Chinese Society of Paleontology and the 29th Annual Academic Conference. Zhengzhou: Palaeontological Society of China, 2018.
    [13]
    张涛, 雷丹博, 王宾, 等. 陕南寒武系底部宽川铺组微体化石人工智能识别[J]. 古生物学报, 2019, 58(2): 141-151.

    ZHANG Tao, LEI Danbo, WANG Bin, et al. Artificial intelligence identification of microfossils from the Lower Cambrian Kuchuanpu Formation in southern Shaanxi, China[J]. Acta Palaeontologica Sinica, 2019, 58(2): 141-151.
    [14]
    KONG Shu, PUNYASENA S, FOWLKES C. Spatially aware dictionary learning and coding for fossil pollen identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Las Vegas, NV, USA: IEEE, 2016: 1-10.
    [15]
    谢永华, 赵贤国, 王琢. 基于突变点几何约束直方图的花粉图像识别[J]. 计算机仿真, 2018, 35(12): 411-415.

    XIE Yonghua, ZHAO Xianguo, WANG Zhuo. Pollen image recognition based on geometric constraint histogram of mutation points[J]. Computer Simulation, 2018, 35(12): 411-415.
    [16]
    OLSSON O, KARLSSON M, PERSSON A S, et al. Efficient, automated and robust pollen analysis using deep learning[J]. Methods in Ecology and Evolution, 2021, 12(5): 850-862. doi: 10.1111/2041-210X.13575
    [17]
    THEUERKAUF M, SIRADZE N, GILLERT A. A trainable object finder, selector and identifier for pollen, spores and other things: a step towards automated pollen recognition in lake sediments[J]. The Holocene, 2024, 34(3): 297-305. doi: 10.1177/09596836231211876
    [18]
    乔小燕. 赤潮藻显微图像自动识别方法[J]. 山东大学学报(工学版), 2016, 46(3): 1-6.

    QIAO Xiaoyan. Automatic recognition method of microscopic image of harmful algae[J]. Journal of Shandong University(Engineering Science), 2016, 46(3): 1-6.
    [19]
    乔小燕. 基于自适应形态学的甲藻显微图像顶刺提取[J]. 中国海洋大学学报, 2013, 43(4): 117-122.

    QIAO Xiaoyan. Pyrrophyta spine extraction based on adaptive morphology[J]. Periodical of Ocean University of China, 2013, 43(4): 117-122.
    [20]
    夏菁, 白志强, 王宝鹏, 等. 牙形石数字图像采集与图像增强方法研究[J]. 古生物学报, 2014, 53(3): 392-399.

    XIA Jing, BAI Zhiqiang, WANG Baopeng, et al. Conodont digital image acquisition and the method of image enhancement[J]. Acta Palaeontologica Sinica, 2014, 53(3): 392-399.
    [21]
    杨寿勇, 张海阳, 李成, 等. 基于卷积神经网络模型的微藻种类识别[J]. 环境科学与技术, 2020, 43(S2): 158-164.

    YANG Shouyong, ZHANG Haiyang, LI Cheng, et al. Recognition of microalgae species based on convolutional neural network model[J]. Environmental Science & Technology, 2020, 43(S2): 158-164.
    [22]
    徐长贵. 渤海湾盆地天然气勘探新进展、未来方向与挑战[J]. 天然气工业, 2024, 44(1): 72-85.

    XU Changgui. Progress, future direction, and challenges of natural gas exploration in the Bohai Bay Basin[J]. Natural Gas Industry, 2024, 44(1): 72-85.
    [23]
    GONZALEZ R C, WOODS R E. 数字图像处理[M]. 2版. 阮秋琦, 阮宇智, 译. 北京: 电子工业出版社, 2007.

    GONZALEZ R C, WOODS R E. Digital image processing[M]. 2nd ed. RUAN Qiuqi, RUAN Yuzhi, trans. Beijing: Electronic Industry Press, 2007.
    [24]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016.
    [25]
    REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 6517-6525.
    [26]
    BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J/OL]. arXiv preprint arXiv: 2004.10934, 2020. https://arxiv.org/abs/2004.10934.
    [27]
    余晓露, 叶恺, 杜崇娇, 等. 基于卷积神经网络的碳酸盐岩生物化石显微图像识别[J]. 石油实验地质, 2021, 43(5): 880-885. doi: 10.11781/sysydz202105880

    YU Xiaolu, YE Kai, DU Chongjiao, et al. Microscopic recognition of micro fossils in carbonate rocks based on convolutional neural network[J]. Petroleum Geology & Experiment, 2021, 43(5): 880-885. doi: 10.11781/sysydz202105880
    [28]
    奚园园, 王永茂, 芦碧波, 等. 基于深度学习单阶段算法的虫筳类化石检测[J]. 地球科学(中国地质大学学报), 2024, 49(3): 1154-1164.

    XI Yuanyuan, WANG Yongmao, LU Bibo, et al. Fusulinid detection based on deep learning single-stage algorithm[J]. Earth Science(Journal of China University of Geosciences), 2024, 49(3): 1154-1164.
    [29]
    余晓露, 李龙龙, 蒋宏, 等. 融合图像处理与深度学习的亮晶颗粒灰岩岩相学分析应用[J]. 石油实验地质, 2023, 45(5): 1026-1038. doi: 10.11781/sysydz2023051026

    YU Xiaolu, LI Longlong, JIANG Hong, et al. Application of sparry grain limestone petrographic analysis combining image processing and deep learning[J]. Petroleum Geology & Experiment, 2023, 45(5): 1026-1038. doi: 10.11781/sysydz2023051026
    [30]
    李少华, 史敬华, 于金彪, 等. 基于单一图像生成对抗神经网络方法在沉积相建模中的应用[J]. 油气地质与采收率, 2022, 29(1): 37-45.

    LI Shaohua, SHI Jinghua, YU JinBiao, et al. Application of SinGAN method in sedimentary facies modeling[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 37-45.
    [31]
    YANG Guanhao, FENG Wei, JIN Jintao, et al. Face mask recognition system with YOLOV5 based on image recognition[C]//2020 IEEE 6th International Conference on Computer and Communications. Chengdu, China: IEEE, 2020.
    [32]
    ZHU Yi, SAPRA K, REDA F A, et al. Improving semantic segmentation via video propagation and label relaxation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 8856-8865.
    [33]
    韩肖, 马祥. 基于二进制标签松弛模型的遮挡人脸识别[J]. 计算机技术与发展, 2022, 32(1): 1-6.

    HAN Xiao, MA Xiang. Occlusion face recognition based on binary label relaxation[J]. Computer Technology and Development, 2022, 32(1): 1-6.
    [34]
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 4700-4708.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (79) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return